
Proceedings on Privacy Enhancing Technologies ; 2021 (4):6–29

Iñigo Querejeta-Azurmendi*, Panagiotis Papadopoulos, Matteo Varvello, Antonio Nappa, Jiexin
Zhang, and Benjamin Livshits
ZKSENSE: A Friction-less Privacy-Preserving Human
Attestation Mechanism for Mobile Devices
Abstract: Recent studies show that 20.4% of the inter-
net traffic originates from automated agents. To iden-
tify and block such ill-intentioned traffic, mechanisms
that verify the humanness of the user are widely de-
ployed, with CAPTCHAs being the most popular. Tra-
ditional CAPTCHAs require extra user effort (e.g., solv-
ing mathematical puzzles), which can severely down-
grade the end-user’s experience, especially on mobile,
and provide sporadic humanness verification of ques-
tionable accuracy. More recent solutions like Google’s
reCAPTCHA v3, leverage user data, thus raising sig-
nificant privacy concerns. To address these issues,
we present zkSENSE: the first zero-knowledge proof-
based humanness attestation system for mobile devices.
zkSENSE moves the human attestation to the edge:
onto the user’s very own device, where humanness of
the user is assessed in a privacy-preserving and seamless
manner. zkSENSE achieves this by classifying motion
sensor outputs of the mobile device, based on a model
trained by using both publicly available sensor data and
data collected from a small group of volunteers. To en-
sure the integrity of the process, the classification result
is enclosed in a zero-knowledge proof of humanness that
can be safely shared with a remote server. We implement
zkSENSE as an Android service to demonstrate its ef-
fectiveness and practicality. In our evaluation, we show
that zkSENSE successfully verifies the humanness of a
user across a variety of attacking scenarios and demon-
strate 92% accuracy. On a two years old Samsung S9,
zkSENSE’s attestation takes around 3 seconds (when
visual CAPTCHAs need 9.8 seconds) and consumes a
negligible amount of battery.

Keywords: Human Attestation, Privacy Preserving Bot
Detection, Frictionless verification of humanness

DOI 10.2478/popets-2021-0058
Received 2021-02-28; revised 2021-06-15; accepted 2021-06-16.

*Corresponding Author: Iñigo Querejeta-Azurmendi:
Universidad Carlos III Madrid / ITFI, CSIC. Part of the work
performed while working at Brave Software.
Panagiotis Papadopoulos: Telefónica Research
Matteo Varvello: Bell Labs
Antonio Nappa: University of California, Berkeley
Jiexin Zhang: University of Cambridge

1. Introduction
Automated software agents that interact with content
in a human-like way, are becoming more prevalent and
pernicious in the recent years. Web scraping, com-
petitive data mining, account hijacking, spam and ad
fraud are attacks that such agents launch by mimick-
ing human actions at large scale. According to a recent
study [1], 20.4% of the 2019 internet traffic was fraudu-
lent, associated with user, albeit not human, activity.

In the ad market specifically, such type of fraudulent
traffic costs companies between $6.5-$19 billions in the
U.S. alone, and it is estimated that this will grow to $50
billion by 2025 [2]. When it comes to the ever-growing
mobile traffic, a recent study [3] (using data spanning 17
billion transactions) observes 189 million attacks origi-
nated specifically from mobile devices; this is an increase
of 12% compared to the previous six months.

The “Completely Automated Public Turing tests
to tell Computers and Humans Apart” (or just
CAPTCHA) is the current state-of-the-art mechanism
to assess the humanness of a user. CAPTCHAs are
widely deployed across the internet to identify and block
fraudulent non-human traffic. The major downsides
of current CAPTCHA solutions (e.g., Securimage [4],
hCaptcha [5]) include: (i) questionable accuracy:
various past works demonstrate how CAPTCHAs can
be solved within milliseconds [6–10], (ii) added fric-
tion: additional user actions are required (e.g., image,
audio, math, or textual challenges) that significantly im-
poverish the user experience [11], especially on mobile
devices, (iii) discrimination: poor implementations
often block access to content [12], especially to visual-
impaired users [13] (iv) serious privacy implica-
tions: to reduce friction, Google’s reCAPTCHAv3 [14]
replaces proof-of-work challenges with extensive user
tracking. Google’s servers attest user’s humanness by
collecting and validating behavioral data [15] (i.e., typ-
ing patterns, mouse clicks, stored cookies, installed plu-
gins), thus raising significant privacy concerns [16–18].

The goal of this paper is to build a humanness at-
testation alternative that will put an end to the false

Benjamin Livshits: Brave Software/Imperial College

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 7

dilemma: humanness attestation at the cost of user ex-
perience or at the cost of user privacy? By leveraging
the device’s motion sensors we demonstrate that it is
possible to build a humanness attestation mechanism
on the edge that preserves the privacy of the users and
runs seamlessly on the background thus requiring zero
interaction from the mobile user.

The key intuition behind our approach is that when-
ever a (human) user interacts with a mobile device,
the force applied during the touch event generates mo-
tion. This motion can be captured by the device’s sen-
sors (e.g., accelerometer and gyroscope) and used to
uniquely distinguish real users from automated agents.
Further, this detection can run on the user device, with-
out requiring secure execution environment (unlike re-
lated proposals [19, 20]), but more importantly with-
out sharing private information with any server (unlike
state-of-the-art [14]), apart from a proof that guarantees
the integrity of the attestation result. Secure execution
environments are rapidly evolving and might soon be-
come a crucial tool for human attestation mechanisms,
however, we have not yet seen wide adoption by low-
end devices. We realize this vision with zkSENSE, a
friction-less and privacy-preserving mechanism for hu-
manness attestation that aims to replace CAPTCHA in
mobile devices. This paper makes the following contri-
butions:
1. We design a human attestation system (zkSENSE)

that is both friction-less and privacy preserving.
zkSENSE leverages mobile motion sensors to verify
that user actions (e.g., type/touch events) on a mo-
bile device are triggered by an actual human. Such
classification takes place by studying the output of
the mobile device’s motion sensors during the par-
ticular user action. To set the ground truth, we use
publicly available sensor traces and we instrument
an actual Android browser app to capture both user
clicks and sensor traces from a small set of real users.
Our approach is tested under various scenarios: (i)
when device is resting (on a table), (ii) when there is
artificial movement from device’s vibration, or (iii)
from an external swinging cradle.

2. We develop a sub-linear inner product zero-
knowledge proof, which we use to build (and open-
source1) zkSVM: a zero-knowledge based library for
enclosing results of an SVM (Support-Vector Ma-
chine) classifier into zero-knowledge proofs. zkSVM
leverages arithmetic properties of commitment func-

1 zkSVM source code: https://github.com/iquerejeta/zkSVM

tions and prover-effective proofs to ensure the in-
tegrity of the classification result reported to a re-
mote server.

3. We implement an Android SDK and a demo app2

to showcase the detection accuracy of zkSENSE.
zkSENSE is invisible to the user and capable of ver-
ifying their humanness with accuracy higher than re-
lated proposals [19] (92%). Performance evaluation
results of our prototype show that the entire attesta-
tion operation takes less than 3 seconds (compared
to 9 sec [21] required by Android reCAPTCHA [22]
and consumes less than 5 mAh of power.

2. Goals and Threat Model
In this section, we describe (i) the basic design principles
that a humanness verification mechanism must follow,
and (ii) how existing mechanisms work and compare
with zkSENSE. Specifically, a successful human attes-
tation mechanism must:
A) Be friction-less: Most existing mechanisms re-
quire the user to solve mathematical quizzes or im-
age/audio challenges [4, 5], thus severely hampering the
user experience. According to studies [21, 23]: (i) hu-
mans only agree on what the CAPTCHA says 71% of
the time, (ii) visual CAPTCHAs take 9.8 seconds (on
average) to complete, (iii) audio CAPTCHAs take 28.4
seconds (and 50% of the Audio CAPTCHA users quit).
The profound degradation of the user experience forces
service providers to perform user attestations only spo-
radically [24–26] in an attempt to save their declining
conversion rates. Related research works [27–29] reduce
user friction by requiring, for example, the user to tilt
their phone during humanness verification. In contrast,
zkSENSE is completely friction-less: humanness is at-
tested via device micro-movements that happen during
natural user actions like typing, and screen touching.
B) Be privacy-preserving: To mitigate the above,
mechanisms like reCAPTCHA v3 [14] (i) track the user
while browsing a webpage, (ii) send raw tracking data
to third party attestation servers, where (iii) a “risk
score” representative of humanness is computed and
then (iv) shared with the webmasters. Of course, this
pervasive behavioral tracking raises significant privacy
concerns [16, 17]. Similarly, there are sensor-based ap-
proaches [19, 27, 28] that transmit raw mobile sensor
data to remote attestation servers; something that as
reported, may reveal keystrokes, gender, age, or be used

2 Demo video: https://youtu.be/U-tZKrGb8L0

https://github.com/iquerejeta/zkSVM
https://youtu.be/U-tZKrGb8L0

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 8

to fingerprint users [30–36]. Contrary to that, zkSENSE
decouples the humanness attestation procedure from
the server, and moves it to the edge. By performing the
entire attestation on the user’s very own device, no sen-
sitive data but the classification result (enclosed in zero-
knowledge proofs to ensure integrity) leaves the user’s
mobile device.
C) Be broadly accessible: The majority of
CAPTCHA solutions are not accessible to all
users [13, 37]. According to a survey [38], CAPTCHAs
are the main source of difficulty for visually impaired
users. Meanwhile, human attestation mechanisms
designed for visually impaired people (like audio-
based reCAPTCHA) have been exploited to bypass
CAPTCHAs by providing automatic responses [39, 40].
zkSENSE’s seamless integration with a user’s natural
interaction with a device does not introduce any
additional barrier to people affected by any form of
disability. We must clarify however, that zkSENSE is
not tested to serve people that use voice commands
instead of screen touching (and thus do not cause
micro-movements during scroll, clicks, etc.). Extending
our classifier to work with the buttons of the devices
(i.e., lock/unlock, volume up/down) that visually
impaired people use is part of our future work.

2.1 Threat Model
Formal security properties: In Appendix B we in-
troduce formal notions of privacy and verifiability, and
prove that zkSVM provides them. Informally, these no-
tions ensure that the user data is kept private from an
adversary, and that a proof convinces a verifier that the
submitted result can only be originated by applying the
SVM model to the committed vector. zkSENSE does
not provide any guarantees on the origin of the input
data itself. Hence, as with other widely deployed hu-
man attestation mechanisms (i.e., reCAPTCHAv3) an
adversary capable of forging human activity is capable
of bypassing the mechanism. Our scheme provides re-
play prevention of proofs, but not of the data used to
generate such proofs, making it possible to perform sev-
eral attestations with a single vector.
Attacker: We assume the same attacker model as
in CAPTCHA systems: an attacker who is capable of
automating user actions while accessing an online ser-
vice. The goal of such attacker is to imitate a legitimate
user and launch attacks like content scraping, ad view-
ing/clicking, API abuse, spam sending, DDoS perform-
ing, etc., for monetary gain. This monetary gain can be
achieved either (i) indirectly: e.g., app developers pay

attackers to perform Black Hat App Store Optimiza-
tion attacks to increase their app ranking [41–43], or
(ii) directly: an attacker registers for reward schemes in
mobile apps (e.g., Brave’s Ad Rewards [44]) via multiple
accounts and claim rewards.

As for CAPTCHA systems, click farms are not in-
cluded in this threat model, since they rely on malicious
but human activity. Additionally, we assume that the
attacker does not control the device’s OS (rooted de-
vice). Such a powerful attacker has the capabilities to
launch much more severe attacks (e.g., install spyware,
steal passwords or sensitive user data, modify firmware,
tamper with sensors) [45, 46].
Server-auditor: We assume a set of servers that act
as auditors, simply receiving and verifying the human-
ness classification results the users report. Contrary to
reCAPTCHAv3, such servers are not required to be
trusted by the users. Users can report a server that de-
nies issuing tokens to an attested user.
User: Throughout the rest of this paper, when we men-
tion user activity, we mean screen interaction, which
results (when interpreted by the mobile OS) in click-
ing, key typing, or scrolling. We further assume mobile
devices equipped with a set of sensors that includes a
gyroscope and an accelerometer.

3. Building Blocks
In this section, we briefly introduce the concepts of zero-
knowledge proofs and commitment functions: the basic
pillars of our privacy preserving construction.

3.1 Preliminaries
Let G be a cyclic group with prime order p gener-
ated by generator g. Let h be another generator of the
group G where the discrete logarithm of h with base
g is not known. Furthermore, let g1, . . . , gn, h1, . . . , hn
denote 2n distinct group elements where their rela-
tive discrete logarithms are unknown. We denote the
integers modulo p as Zp and write a ∈R S to de-
note that a is chosen uniformly at random from a set
S. Although any prime order group where the Deci-
sional Diffie–Hellman (DDH) assumption holds may be
used, in our implementation we used the ristretto255
group [47] over Curve25519 [48].
Notation: We use bold letters to denote vectors. In
particular, g ∈ Gn is defined by (g1, . . . , gn) with gi ∈ G,
and a ∈ Znp by (a1, . . . , an) with ai ∈ Zp. We use
normal exponentiation notation to denote the multi-
exponentiation of two vectors, with ga =

∏n
i=1 g

ai
i .

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 9

Moreover, two vector multiplications (or additions) rep-
resents the entry wise multiplication (or addition).

3.2 Zero-Knowledge Proofs
In [49] the technique of (interactive) zero-knowledge
Proof (ZKP) is presented to enable one party (prover)
to convince another (verifier) about the validity of a
certain statement. The proof must provide the following
informal properties (we formalise them in Appendix A):
– Completeness: If the prover and verifier follow the

protocol, the latter always validates.
– Knowledge soundness: The verifier only accepts the

proof if the statement being proven holds.
– Honest-verifier zero-knowledge: The prove discloses

no other information other than the fact that the
statement is true.

Blum et al. [50] introduced non-interactive zero-
knowledge Proofs (NIZKPs), which enable the prover
to prove the validity of a statement without interacting
with the verifier. NIZKPs enjoy a growing popularity
and adoption in the blockchain era, used across vari-
ous applications mostly for decentralization, verifiabil-
ity and accountability [51–54]. NIZKPs can be extended
to Signature Proofs of Knowledge (SPK) [55], in which
the prover signs a message while proving the statement.
We adopt the Camenisch-Stadler notation [55] to denote
such proofs and write, for example:

SPK{(x) : A = gx ∧ B = Ax}(w)

to denote the non-interactive signature proof of knowl-
edge, over message w, that the prover knows the dis-
crete log of A and B with bases g and A respectively,
and that the discrete log is equal in both cases. Values
in the parenthesis are private (called the witness), while
all other values in the proof are public. We omit the
notation of the signed message throughout the whole
paper, but we assume that all SPKs sign a challenge
sent by the server every time it requests human attes-
tation. This prevents replay attacks of zero knowledge
proofs. We represent proofs with Π, and define two func-
tions: the generation function, Π.Gen(), and the verifi-
cation function, Π.Verif(). The inputs are, for the case
of the generation, the public values and the witness (in
the example above, A,B and x). On the other hand,
the verification function only takes the public values as
input (in the example above, A and B).

Blockchain has created a high interest in building
proofs with minimal size and verifier computation [56–
60], but with the cost of increasing the prover’s time. In
Section 7., we show how proving execution of the SVM

model based on [56] (one of the most widely used such
proofs) is unbearable for mobile devices.

3.3 Homomorphic Commitment Functions
In this paper, we use additive homomorphic commit-
ment functions, a cryptographic primitive that allows
a party to commit to a given value, providing the hid-
ing property (the value itself is hidden) and the binding
property (a commitment cannot be opened with a dif-
ferent value than the original one). We present our work
based on the Pedersen Commitment Scheme [61]. The
Pedersen Commitment scheme takes as input message
m ∈ Zp and a hiding value r ∈R Zp and commits to it
as follows:

Commit(m, r) = gm · hr.

Note the additive homomorphic property, where:

Commit(m1, r1) · Commit(m2, r2) =
gm1+m2 · hr1+r2 = Commit(m1 +m2, r1 + r2).

Furthermore, in this paper we use a generalization of
the Pedersen Commitment [62], that instead takes a
message in m ∈ Znp and a hiding value r ∈R Zp and
commits to it as follows:

Commit(m, r) = gmhr =
n∏
i=1

gmi
i · hr.

Note that such a commitment function has the same
additive property as above, where addition in the mes-
sage committed happens entry wise. Finally, a com-
mitment function has an opening verification function,
where, given the opening and blinding factor, deter-
mines whether these correspond to a given commit-
ment, C. More specifically:

Open(C,m, r, g, h) =

{
> if C = gm · hr

⊥ else

We leverage zero-knowledge proofs over Pedersen
commitments. First, we use a proof of knowledge of
the opening of a commitment [62], ΠOp, and a proof
of equality, ΠEq. Particularly:

ΠOp := SPK {(m, r) : C = gm · hr} .

and

ΠEq := SPK {(m, r1, r2) :
C1 = gm · hr1 ∧ C2 = hm · hr2} ,

respectively. We also construct a ZKP that allows us to
provably exchange any element of the committed vector

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 10

by a zero. To this end we provably extract the particular
value we want to replace with its corresponding gener-
ator, and divide it from the initial commitment. More
particularly:

Π0 := SPK
{

(m ∈ Znp , r) : C = gmhr ∧ E = g
mj

j ∧

C/E = gm1
1 · · · gmj−1

j−1 · gmj+1
j+1 · · · g

mn
n hr

}
.

Next, we use the proof that a committed value is the
square of another committed value presented in [63]:

ΠSq := SPK {(m1,m2, r1, r2 ∈ Zp) :
C1 = gm1 · hr1 ∧ C2 = gm2 · hr2 ∧m1 = m2

2
}
.

To prove that a number is within a range, we leverage
Bulletproofs [59]:

ΠGE := SPK
{

(m, r ∈ Zp) : C = gmhr ∧m ∈ [0, 2l]
}

for some positive integer l. We combine these two proofs,
ΠSq and ΠGE , to prove the correct computation of the
floor of the square root of a committed value. Let C1 =
gm1 ·hr1 , C2 = gm2 ·hr2 and C+1

1 = C1 · g = gm1+1 ·hr1 .
We want to prove that m1 = b√m2c. It suffices to prove
the following two statements:
(i) The square of the committed value in C1 is smaller

or equal than C2, and
(ii) The square of the committed value in C+1

1 is greater
than C2.

We denote this proof by:
Πsqrt := SPK {(m1,m2, r1, r2 ∈ Zp) :
C1 = gm1 · hr1 ∧ C2 = gm2 · hr2 ∧m1 = b

√
m2c} .

4. Sub-linear Inner Product Zero-
Knowledge Proof

In this section, we present the Sub-linear Inner Prod-
uct Zero-Knowledge Proof (IP-ZKP). Our construction
is based on the non zero-knowledge version presented
in [59]. For their use cases, the zero-knowledge property
is not required, and hence the lack of an explicit defini-
tion and study of a zero-knowledge proof. In this section
we make it explicit, and in Appendix A we prove that it
provides completeness, knowledge soundness and special
honest-verifier zero-knowledge properties. In our con-
struction the prover has a commitment, A = hαgahb,
of two vectors a, b with blinding factor α, and a second
commitment V = gchγ , of a value c, with blinding fac-
tor γ. The prover convinces the verifier that 〈a, b〉 = c

holds. The prover and verifier interact as follows (can
be made non-interactive with the Fiat-Shamir Heuris-
tic [64]):

P: It computes blinding vectors, sL, sR for each vector
of the inner product and commits to it:

sL, sR ∈R Znp (1)
ρ ∈R Zp (2)
S = hρgsLhsR ∈ G (3)

Now the prover defines two linear vector polynomi-
als, l(X), r(X) ∈ Znp [X], and a quadratic polynomial
as follows:

l(X) = a+ sL ·X ∈ Znp [X] (4)
r(X) = b+ sR ·X ∈ Znp [X] (5)

t(X) = 〈l(X), r(X)〉 =
t0 + t1 ·X + t2 ·X2 ∈ Znp [X]

(6)

By creating like that the polynomials, it allows for
an evaluation of the polynomial at a given point
without disclosing any information about the vec-
tors a or b. The prover needs to convince the verifier
that the constant term of t(X) equals c. To do so,
the prover commits to the remaining coefficients of
the polynomial

τ1, τ2 ∈R Zp (7)
Ti = gtihτi ∈ G, i = {1, 2} (8)

P → V: S, T1, T2
V: C ∈R Z∗p
V → P: C
P: It computes the response using the challenge re-

ceived

l = l(C) = a+ sL · C ∈ Znp (9)
r = r(C) = b+ sR · C ∈ Znp (10)
t̂ = 〈l, r〉 ∈ Zp (11)
τC = τ2 · C2 + τ1 · C + γ (12)
µ = α+ ρ · C ∈ Zp (13)

P → V: τC , µ, t̂, r, l.
V: The verifier needs to check that r, l are correct and

the inner product relation holds with respect to t̂.
To this end it performs the following checks:

gt̂hτC
?= V · T C1 · T C

2

2 (14)
P = A · SC ∈ G (15)

P
?= hµ · gl · hr (16)

t̂
?= 〈l, r〉 (17)

If all checks validate, then this means that the state-
ment is true with very high probability.

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 11

Fig. 1. Output of gyroscope and accelerometer motion sensors during human and automatically triggered click (red). The maximum
linear acceleration movement is up to 8.5× greater and the angular rotational velocity is up to 4.9× greater in case of a human trig-
gered click.

Fig. 2. Motion sensors output during automatically triggered click with artificial device movement (red): (i) during device vibration (on
the left) and (ii) when device is docked on a swing (on the right).

To make this proof logarithmic, we use the same trick
as in the original paper. Instead of sending the vectors
r, l to prove the inner product relation, we leverage IP-
ZKP over the blinded vectors recursively. We prove the
following Theorem in Appendix A:

Theorem 1. The inner product proof presented in Pro-
tocol 1 has perfect completeness, perfect special honest
verifier zero-knowledge, and knowledge soundness.

5. ZKSENSE Overview
The key intuition behind zkSENSE is that whenever
a (human) user interacts with the mobile’s display, the
force applied during the touch event generates motion.
This motion is captured by the embedded IMU (Iner-
tial Measurement Unit) sensors (e.g., accelerometer and
gyroscope). By contrast, when there is automated user
activity (e.g., simulated touches) there is no external
force exerted by fingers, and thus there is no noticeable
change in the output of the above sensors.

Figure 1 shows a snapshot of the output produced
by IMU sensors during click events performed both by

a human (left plots) and an automated agent (right
plots). During the click events (highlighted in red) the
accelerometer (top plots) senses a max rate of change
of 0.6 in case of human and 0.07 for an automated agent,
i.e., 8.5× greater maximum linear acceleration move-
ment. Similarly, the gyroscope (bottom plots) senses
a max rate of change of 0.024 in case of human click
and 0.0049 when there is automation, i.e., 4.9× greater
maximum angular rotational velocity.

Figure 2 shows a snapshot of the same sensors’ out-
put in the case of automated clicks coupled with two ar-
tificial device movements: vibration and swing. With vi-
bration (left plots), we see that the motion generated is
comparable with the case of the human click depicted in
Figure 1. We see that the accelerometer senses the same
force with the case of the human click but for a longer
time – this verifies the observations of [19]. The gyro-
scope though senses greater angular rotational velocity
and for longer time than in the case of a human’s click.
With swing (right plots), the gyroscope senses similar
angular rotational velocity as with the case of the hu-
man click, while the accelerometer senses greater linear
acceleration movement (up to 3.8×) for a long period.

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 12

Fig. 3. High-level overview of the zkSENSE architecture. An integrated ML-based classifier studies the patterns of sensor outputs
right before, during, and shortly after a click event. To avoid leaking sensitive sensor output outside the device, the classification ap-
pears on the user side and the client has to prove the integrity of the reported result to the server.

5.1 System Overview
Building upon the above observations, zkSENSE uses
an ML-based classifier to study the pattern of sensor
outputs before, during, and shortly after a click event
(see Figure 3). Based on this information, the model
decides about whether the action was triggered by a
human or not.
Human attestation on the edge: Privacy-
preserving evaluation of ML models has become increas-
ingly important especially in the post GDPR era. One
approach consists in encrypting the data on the client,
and runs ML model on such encrypted data at the
server. This can be achieved via Fully Homomorphic En-
cryption (FHE) [65–67]: clients encrypt their data with
their own keys and send the ciphertext to the server
to evaluate an ML model. Next, the server sends the
outcome of the homomorphic computation back to the
user who would provably decrypt it and send back to
the server. It is easy to anticipate that the overhead
to perform such multi-step operation for each client is
unbearable for services with millions of clients.

In zkSENSE, we pre-train a model on a server and
we move the classifier to the edge by running it on
the user side and only report the result to an attes-
tation server responsible for auditing the humanness of
the user. This way, zkSENSE ensures that private sen-
sor data never leaves the user’s device. In Figure 3, we
present the high level overview of our approach. As we
can see, an attestation starts with a click (screen touch).
The motion sensor outputs generated during this event
are used as input to the zkSVM Prover module, which
runs a trained model to classify if the action was con-
ducted by a human or not.

5.2 Classification of Humanness
Data collection: To collect the necessary ground truth
to train the various tested models, we instrumented the

Data Data amount

Volunteering Users 10 users
Duration of collection 22 days
Android Devices tested Google Pixel 3, Realme X2 Pro,

Samsung Galaxy S9/S8/S6, Honor 9,
Huawei Mate 20 Lite, OnePlus 6

Human events collected 7,736 clicks
Artificial events collected 25,921 clicks

Table 1. Summary of the collected dataset.

open source browser Brave for Android to capture click
events (and their corresponding motion sensor traces)
performed during browsing3. Then, we recruited 10 vol-
unteers4 who used our instrumented browser for 22 con-
secutive days for their daily browsing5. The device mod-
els used are: Google Pixel 3, Samsung Galaxy S9, S8
and S6, OnePlus 6, Realme X2 Pro, Huawei Mate 20
Lite and Honor 9. Volunteers were well-informed about
the purpose of this study and gave us consent to collect
and analyse the motion sensor traces generated during
their screen touch events. We urged volunteers to use
their phone as normal.

To generate artificial user traffic, we used adb [68]
to automate software clicks on 4 of the volunteering de-
vices. To test different attack scenarios, during the au-
tomation, we generate software clicks with the device
being in 4 different states:

3 We chose a real app to make sure that the volunteers will
continue using it for a longer period contrary to a possible in-
strumented toy app.
4 For a production ready system a larger pool of real users will
need to contribute data, but for our study we found it difficult to
recruit users who would contribute their clicks for a long time.
5 During data collection the instrumented browser was running
on the users’ devices so we could not control their background
running services. The data collected included only the raw sensor
data during a user click.

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 13

Classifier F1 (weighted) Recall

SVM 0.92 0.95
Decision Tree (9 Layers) 0.93 0.95
Random Forest (8 Trees, 10 Layers) 0.93 0.95
KNN 0.92 0.93
Neural Network (Linear Kernel) 0.86 0.95
Neural Network (ReLU Kernel) 0.91 0.96

Table 2. Accuracy of the various tested classifiers.

Bot Detection

6

We divide each click event into two segments:

Pressing Down Releasing Up

Fig. 4. The period of a click event starts 50ms before the begin-
ning of the action and ends 250ms after the end of it.

1. while resting on a platform (desk/stand)
2. while being carried around in pocket
3. while being placed on a swing motion device
4. while device is vibrating (triggered by adb)
As summarized in Table 1, by the end of the data collec-
tion, we had 7,736 human-generated clicks and 25,921
artificially generated clicks.
Feature selection: During data collection, accelerom-
eter and gyroscope sensors were sampled at 250Hz. For
each click event, we not only consider the device motion
during the touch, but also the device motion right before
and shortly after the touch. In particular, we consider
that the period starts 50ms before the finger touches
the screen and finishes 250ms after it. Then, we split
each period into two segments: (i) before releasing fin-
ger and (ii) after releasing finger as depicted in Figure 4.
For each axis (x, y, z) in accelerometer and gyroscope,
we calculate the average and standard deviation of its
outputs in each segment. In addition, we calculate the
consecutive difference of sensor outputs in each segment
and use the average and standard deviation of these dif-
ferences as features.
Classification accuracy: Using the above features,
we test several ML classifiers via 10-fold cross valida-
tion. Table 2 presents the weighted F1 score and recall
of the different classifiers we tested. We choose weighted
F1 score as an evaluation index because our dataset is
unbalanced. In this context, recall means the propor-
tion of correctly identified artificial clicks over all artifi-
cial clicks. In other words, recall indicates the ability to
capture artificial clicks.

As shown in Table 2, the four tested classifiers (i.e.,
SVM, decision tree, random forest, and neural network
with ReLU kernel) have similar performance in terms
of recall (i.e., 0.95 recall). Although, Decision Tree and
Random Forest perform slightly better in terms of ac-
curacy, zkSENSE utilizes SVM for compatibility pur-
poses as stated in more detail in Section 5.3. Hence, our
zkSENSE’s accuracy in assessing the humanness of a
user is 92%.

5.3 Privacy-Preserving and Provable ML
To preserve privacy, human attestation in zkSENSE is
performed in the user’s device and only the result of the
attestation is shared with the server. To ensure that the
server can verify the integrity of the transmitted result,
the user includes a commitment of the sensors, together
with a proof that the result corresponds to the model
evaluated over the committed values.

We build the two ML evaluation proving com-
ponents of zkSENSE: (i) zkSVM Prover and (ii)
zkSVM Verifier. The zkSVM Prover checks on the
client whether a user is a human based on a model we
pre-trained (Section 5.2), and generates a proof to en-
sure its proper execution. The zkSVM Verifier, on the
server’s side, checks that the proof is correctly gener-
ated. If the verification is successful, the server will know
that (a) the ML-based humanness detection model clas-
sifies the user as human or non-human based on the
committed sensor outputs, and that (b) the used model
is the genuine one, without though learning the value of
sensor outputs.
SVM enclosed in zero-knowledge proofs: Sec-
tion 5.2 shows that the different classifiers tested achieve
similar accuracy. While decision trees, random forests,
or neural networks provide slightly higher F1 accuracy
than SVM (see Table 2), in zkSENSE we choose SVM
as the underlying model due to its simplicity at evalua-
tion time and its suitability with zero-knowledge proofs.
Contrarily, neural networks need to perform non-linear
operations, while decision trees require several range
proofs, which are expensive operations to prove in zero-
knowledge. As mentioned in Section 5.2, the SVMmodel
we trained uses as features the average (µ) and standard
deviation (σ) of sensor outputs, together with the aver-
age and standard deviation of the consecutive difference
vector. On top of that, before applying the SVM model,
the extracted features need to be normalised. The goal
of normalisation is to change data values to a common
scale, without distorting differences in the ranges of val-

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 14

ues. Then, trained SVM weights are assigned to each
normalised feature to calculate the SVM score.

Suppose for each feature fi, the normalisation mean,
normalisation scale, and SVM weight and intercept are
Mi, Si, wi and c respectively. Then, the SVM score s
can be calculated with the equation:

s = 1

e
−(c+

∑N

i=1
(fi−Mi)

Si
wi) + 1

. (18)

Since only the value of fi is secret, we only need to
prove the computation of

∑N
i=1 fi

wi
Si
. Given only in-

teger values can be processed in the underlying group
arithmetic of Pedersen commitments, we instead prove∑N
i=1 fi

⌊
wi
Si

10d
⌋
and effectively use the parameter d to

preserve d-digits after the decimal points of wi
Si
.

Building zkSVM: Without loss of generality, we as-
sume that the number of sensor inputs is n for every
sensor. The protocol is divided in three phases. First,
the setup phase, Setup(λ), where the server generates
the model and their corresponding weights. Secondly,
the proving phase, where the prover fetches the SVM re-
lated data, computes the difference vector, and proceeds
to provably compute the average and standard deviation
of these values. It then applies the corresponding linear
combinations to the hidden features, and opens the re-
sult to send it to the verifier. Finally, the verification
phase, where the verifier checks that all computations
were correctly performed. Then, it checks whether the
scores do correspond to a human or a bot.
Setup phase: The setup involves the server, where
it generates the cryptographic material, and trains the
SVM model. The details on how this model is generated
falls out of the scope of zkSVM, the only requirement
is that it follows the specifications described at the beg-
gining of this section. Once these values are computed,
they are published to allow provers to fetch them and
generate the proofs.

Procedure 1. (Setup) On input the security parame-
ter, λ, the zkSVM server runs Setup(λ) to generate the
SVM and cryptographic parameters. Precisely, it trains
the SVM model and generates the normalisation mean,
normalisation scale, and SVM weight and intercept,Mi,
Si, wi and c respectively. It also defines the size of the
input vectors, n, which defines how long a touch is con-
sidered and the measurement frequency. Next it selects
the group, G with generators g, h and prime order p. It
proceeds by computing two vectors, g,h, of generators
that act as bases for the Pedersen Vector Commitments.
Note that the corresponding discrete log of these bases
must remain unknown.

Proof generation: The proof generation is divided
in five protocols. First the prover computes the dif-
ference vectors and proves correctness. Next it com-
putes the average of all vectors, followed by a computa-
tion of the standard deviation. Finally, it evaluates the
normalising linear computations over the results, and
sends the opening of the result to the verifier together
with the proofs of correctness. The prover’s secret is
v ∈ Znp , r ∈ Zp such that

SH = gv · hr.

Procedure 2. (Consecutive difference) In this step the
prover’s goal is to compute the difference of consecu-
tive values in the input vector, while keeping it hidden.
Mainly, we want a provable value of

SdH = gvdhrd ,

with vd = [v1 − v2,v2 − v3, . . . ,vn−1 − vn, 0]. The in-
tuition here is first to get a commitment of the iterated
values of the sensor vector, then leverage the homomor-
phic property to subtract this commitment with SH and
finally provably replace the value in position n by zero.
To compute the iterated value, the prover first iterates
the base generators, to get

giter = [gn, g1, . . . , gn−1].

Note that this step can be performed by the verifier as
the generators are public. It then commits the sensor
vector with this base

SiterH = gv
iter · hriter ,

with riter ∈R Zp, and generates a proof of equality,

ΠEq = ΠEq.Gen(g, giter, h, SH , SiterH ;v, r, riter).

Note that

SiterH = gv2
1 · · · g

vn
n−1 · g

v1
n · hriter ,

so now we can simply subtract the two commitments to
get

SH = SH/S
iter
H = gv1−v2

1 gv2−v3
2 · · ·

g
vn−1−vn

n−1 gvn−v1
n · hr−riter .

Finally, the prover replaces the value in the exponent of
gn by a zero, to get the final commitment:

Diff = gv1−v2
1 gv2−v3

2 · · · gvn−1−vn

n−1 g0
n · hrd , (19)

and generates a proof of correctness,

Π0 = Π0.Gen(g, h, SH , Diff ;vd, r − riter, rdiff). (20)

It stores ∆ =
[
Diff, SiterH ,ΠEq,Π0

]
.

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 15

Procedure 3. (Sum of vectors) The prover now com-
putes µ̃ = N · µ, mainly, the sum of all values. To prov-
ably compute this, we leverage IP-ZKP between the ini-
tial commitment, SH , and a Pedersen commitment with
base h of the one vector, h1, to prove that a third com-
mitment, Avg = Comm(µ̃, rµ), commits to the sum of the
committed values in SH ,

〈v,1〉 = µ̃.

The user proves correctness of the commitment,

ΠµIP = ΠIP .Gen(g,h, g, h, SH · h1, Avg;v, r).

It stores both values M =
[
Avg,ΠµIP

]
. It repeats the

same steps as above with the commitment of the con-
secutive difference vector, resulting in a commitment of
the average, Avg ′, and a proof of correctness, ΠµIP

′. It
stores both values M′ =

[
Avg ′,ΠµIP

′].
Procedure 4. (Standard deviation) To calculate a fac-
tor of the standard deviation, σ, we first compute the
variance, σ2. Recall that

σ2 = 1
N

N∑
i=1

(vi − µ)2,

or written differently

σ2 = 1
N
〈v− µ,v− µ〉,

where µ is a vector with µ in all its positions. For this we
need the average, but only have a provable commitment
of the sum, µ̃. Hence, instead of computing the variance,
we compute N3 · σ2 by leveraging the inner product
proof and the arithmetic properties of the commitment
function. The intuition is the following: if we multiply
each entry of v by N , we can get the following relation.

〈N · v− µ̃, N · v− µ̃〉 =
〈N · v−N · µ, N · v−N · µ〉 =
〈N · (v− µ), N · (v− µ)〉 =

N2〈v− µ,v− µ〉 = N3 · σ2. (21)

However, we only have SH , and a provable commitment
of µ̃ (not of µ̃). Moreover, we need a commitment of
v and µ̃ under both bases (g and h). To this end, the
prover computes the following steps. First, it computes
the commitment of µ̃ with both bases. To this end, the
prover first computes a product of all the bases,

gΠ =
n∏
i=1

gi and hΠ =
n∏
i=1

hi.

Note that this step is again reproducible by the verifier,
and hence no proof is required. Next it commits the
average using these products as a base, to get

Gµ̃ = gµ̃Π · h
rG = gµ̃1 · · · g

µ̃
n · hrG ,

and
H µ̃ = hµ̃Π · h

rH = hµ̃1 · · ·h
µ̃
n · hrH ,

with rG, rH ∈R Zp. It proves equality between the open-
ing of Avg,Gµ̃ and H µ̃ using ΠEq, and stores the two
proofs,

ΠGEq = ΠEq.Gen(gΠ, g, h,Avg,G
µ̃;µ, rµ, rG),

and

ΠHEq = ΠEq.Gen(hΠ, g, h,Avg,H
µ̃;µ, rµ, rH),

one for each base. Finally, the prover commits to v with
randomness rS with h as bases,

HS = hvhrS ,

and proves equality of opening with respect to SH , get-
ting

ΠSEq = ΠEq.Gen(g,h, h, SH , HS ;v, r, rS).

This allows the prover to leverage relation (21) to prov-
ably compute a commitment of a factor of the variance
using the proof presented in Section 4. To this end, it
computes

AS = SNH /G
µ̃ ·HN

S /H
µ̃ =

gN ·v−µ̃ · hN ·v−µ̃ · hN ·r−rG+N ·rS−rH

and the commitment of the factor of the variance,

V ar = Comm(N3 · σ2, rV).

It generates a proof of correctness

Πσ
2

IP = ΠIP .Gen(AS , V ar, g,h, g, h;
v, µ̃, r, rG, rH , rS , rV).

Finally, the prover needs to compute the square
root of the variance. To this end, it commits to
the floor of the square root of N3 · σ2, Std =
Commit(b

√
N3 · σ2c, r√). Then, the prover leverages the

square root proof introduced in Section 3.3, and gener-
ates

Πσsqrt = Πsqrt.Gen(V ar, Std, g, h;σ2, σ, rV , r√).

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 16

This results in a provable commitment of a factor of the
floor of the standard deviation, Std. The prover stores,

Λ =
[
Gµ̃, H µ̃, HS ,ΠGEq,ΠHEq,ΠSEq,

V ar,Πσ
2

IP , Std,Πσsqrt
]
.

It repeats the same steps above with the consecutive
difference vector (and average), resulting in

Λ′ =
[
Gµ̃ ′, H µ̃ ′, HS

′,ΠGEq ′,ΠHEq ′,

ΠSEq ′, V ar ′,Πσ
2

IP
′, Std ′,Πσsqrt ′

]
.

Procedure 5. (Computing SVM score) Provably com-
puting SVM score (Eq. 18) reduced to provably com-
puting

∑N
i=1 fi

⌊
wi
Si

10d
⌋
where fi are the features. How-

ever, note that we do not have the features themselves,
but a factor of them. Hence, with this scheme, we need
to compute instead r =

∑N
i=1 fi

⌊
wi

Ni·Si
10d
⌋
where Ni

equals N if fi is an average, and N3/2 if it is a standard
deviation (note that we have different factors of each).
Again, wi

Ni·Si
is public. Let Commi = Commit(fi, ri) be the

commitment of feature fi with blinding factor ri. The
prover computes the following:

Res =
N∏
i=1

Comm

⌊
wi

Ni·Si
10d
⌋

i =

N∏
i=1

Commit
(
fi ·
⌊

wi
Ni · Si

10d
⌋
, ri ·

⌊
wi

Ni · Si
10d
⌋)

=

Commit

(
N∑
i=1

fi

⌊
wi

Ni · Si
10d
⌋
, rR

)
, (22)

where rR =
∑N
i=1 ri

⌊
wi

Ni·Si
10d
⌋
, is the blinding factor

known to the prover. Once these operations have been
performed, the prover stores the opening of the com-
mitment, Score =

∑N
i=1 fi

⌊
wi

Ni·Si
10d
⌋
, and the blinding

factor rR.

Procedure 6. (Sending values) The prover sends to
the verifier the following tuple[

SH ,∆,M,M′,Λ,Λ′, Score, rR
]

Proof verification: The verifier then performs all re-
spective linear combinations commitments, and verifies
the zero-knowledge proofs. If any proof fails or the eval-
uation of the model over Score fails, the verifier denies
the request. Else, it accepts it. More precisely, the veri-
fier follows the following steps:

Procedure 7. (Verifying consecutive difference) The
verifier begins by iterating the base of generators:

giter = [gn, g1, . . . , gn−1].

and then verifies the proof of opening equality,

ΠEq.Verif(g, giter, h, SH , SiterH) ?= >.

Next it computes the subtraction commitment to get

SH = SH/S
iter
H .

Finally, it verifies that the proof

Π0.Verif(g, h, SH , Diff) ?= >.

Procedure 8. (Verifying sum of vectors) The verifier
checks the inner product proof

ΠµIP .Verify(g,h, g, h, SH · h1, Avg) ?= >.

It repeats this step for the consecutive difference com-
mitment and proof.

Procedure 9. (Verifying standard deviation) The ver-
ifier first computes a product of all the bases,

gΠ =
n∏
i=1

gi and hΠ =
n∏
i=1

hi.

Next it verifies the proofs of equality of commitments
using these bases

ΠGEq.Verify(gΠ, g, h,Avg,G
µ̃) ?= >,

and
ΠHEq.Verify(hΠ, g, h,Avg,H

µ̃) ?= >.

Next, the verifier checks that HS commits to the input
vector

ΠSEq.Verify(g,h, h, SH , HS) ?= >.

Now the verifier needs to generate the commitments un-
der which the inner product proof of the variance will
verify against. To this end it computes

L = SH/G
µ̃ and R = HS/H

µ̃ (23)

and uses them to verify the inner product proof

Πσ
2

IP .Verify(L ·R, V ar, g,h, g, h) ?= >.

Finally, the verifier checks the correctness of the factor
of the standard deviation commitment

Πσsqrt.Verify(V ar, Std, g, h) ?= >.

It repeats these steps for the consecutive difference com-
mitments.

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 17

Procedure 10. (Computing SVM score) Finally, the
verifier computes the same linear combinations as the
prover,

Res′ =
N∏
i=1

Comm

⌊
wi

Ni·Si
10d
⌋

i , (24)

and checks the validity of the received opening,

Open(Res′, Score, rR, g, h) ?= >.

It uses this value to compute the final score as described
in Equation (18). If any of the checks fail or the score
determines the user is a bot, it returns ⊥, otherwise it
returns >.

By extending the inner product proof presented in [59]
to a zero-knowledge proof and leveraging the arith-
metic properties of Pedersen commitments, we present
zkSVM, a privacy-preserving SVM evaluation model.

6. System Implementation
To assess the feasibility and effectiveness of our
approach we developed (i) an open source library
of zkSVM, and (ii) a prototype Android SDK of
zkSENSE.

6.1 Enclosing SVM Result in a ZKP
The zkSVM library: To prove the integrity of
the classification results, we developed an open-sourced
Rust library that implements the logic presented in Pro-
tocol 2, on enclosing SVM results in zero-knowledge
proofs. To this end, we additionally implement the Ped-
ersen Commitment ZKPs as described in Section 3.3.
For the proofs ΠSq,ΠEq,Π0 and ΠOp, we base our im-
plementation in the work presented in [62]. We use the
range proof presented in [59] and implemented in [69].
Finally, for ΠIP , we implement the zero-knowledge
proof presented in Section 4. All the above proofs are im-
plemented using the ristretto255 prime order group over
Curve25519 by leveraging the curve25519-dalek [48] li-
brary. All our proofs leverage the Fiat-Shamir heuris-
tic to make the ZKPs non-interactive, which main-
tains all security properties under the Random Oracle
model [70]. To integrate this library with our detection
engine, we use the Android NDK development kit.
General-purpose ZK-SNARK: To compare the
performance of zkSVM, we implement the SVM exe-
cution using the ZoKrates general-purpose ZK-SNARK
toolbox [71]. ZoKrates works as a high-level abstraction
for the encoding of the computation to be proved into
a ZK-SNARK. ZoKrates constructs the ZKP by using

the Rust implementation of Bellman’s [72] Groth16 ZK-
SNARK [56]. This construction has optimal proof size
and verification time. However, this comes by trading off
prover’s computational complexity and the requirement
of a trusted setup.

6.2 ZKSENSE Prototype
We implemented a prototype SDK of zkSENSE for
Android (∼1,000 lines of Java). The SDK monitors
Android’s accelerometer and gyroscope during a touch
event and, by applying a pre-trained model, it deter-
mines if it was performed by a human or not. For demon-
stration purposes, we created a demo app with a user
interface that shows the output of the detection model
and we provide publicly a video6 that demonstrates its
functionality. In this demo, we test multiple scenarios
to showcase the accuracy of our system:

1. The device is resting on a steady platform and:
(a) A human is performing clicks.
(b) Clicks are simulated.

2. The device is docked on a swing motion device that
produce artificial movement.

3. The device is held in one hand and:
(a) A human is performing clicks.
(b) Clicks are simulated.

After reading the output of the accelerometer and
gyroscope sensors, the zkSENSE SDK applies, on the
background, our pre-trained model and classifies the ori-
gin of the touch-screen event (i.e., performed by a hu-
man or not). For the generation of the ZKPs and the
model’s evaluation, we leverage the library we imple-
mented and described previously, which we call from
the mobile device using the sensor data. The pre-trained
model, is generated on a server of ours. Apart from gen-
erating and distributing the trained model, the server
also acts as the external auditor that verifies the valid-
ity of the transmitted attestation results.

7. Performance Evaluation
In this section, we set out to explore the performance of
humanness attestation in zkSENSE. More specifically,
we benchmark our Android prototype with respect to
the duration of its main operations: (i) humanness clas-
sification, (ii) Pedersen commitment computation, and
(iii) zero-knowledge proof construction. Next, we eval-
uate general resource utilization metrics: (a) CPU, (b)

6 zkSENSE demo: https://youtu.be/U-tZKrGb8L0

https://youtu.be/U-tZKrGb8L0

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 18

Fig. 5. Execution time per operation. On
commodity hardware (S9) humanness de-
tection and commitments are extremely
fast (i.e., about 0.3), when the ZKP gener-
ation lasts about 2.9 seconds.

Fig. 6. CPU utilization per operation. On
commodity hardware (S9), the ZKP gener-
ation is the most expensive operation, with
a median CPU consumption of about 15%
on commodity hardware.

Fig. 7. Energy consumption per opera-
tion on a low-end hardware. Energy con-
sumption for detection and committing
operation is negligible, when for the ZKP
computation zkSENSE consumes about 5
mAh or 0.2% of the device’s battery.

memory, and (c) battery consumption. Our tests cover
the three key operations of a humanness attestation in
zkSENSE, and a comparative baseline:

1. The baseline, where we run our demo application
which uses zkSENSE service (see Section 6.) and
several artificial clicks are generated.

2. The detection operation, where sensors input is
collected and humanness classification realized on
zkSENSE.

3. The commitment operation where the Pedersen
commitment computation is taking place.

4. The ZKP operation where the proof of correct at-
testation is constructed.

We test and compare the different implementations
described in Section 6.: (i) the general-purpose ZK-
SNARK and (ii) our zkSVM. Note that for ZK-SNARK
we ignore the time elapsed while computing the trusted
setup, as this cannot be computed by the client. We run
each stage for an hour and we ensure the same number
of artificial clicks by using as an interval the duration
of the longest operation (ZKP) as empirically measured
on each device under test (Figure 5).
Setup: We leverage a testbed composed of two Android
devices representative of a mid-end (Samsung Galaxy
S9, model 2018) and a low-end (Samsung Galaxy J3,
model 2016) device to inspect what is the worst per-
formance a user can get on a cheap (around 90 USD)
device. The S9 mounts an octa-core processor (a Quad-
Core Mongoose M3 at 2.7GHz and a Quad-Core ARM
Cortex-A55 at 1.8Ghz), while the J3 is equipped with
a quad-core ARM Cortex A53 at 1.2 Ghz. The S9 also
has twice as much memory (4 GB when J3 has 2 GB)
and a larger battery (3,000 mAh when the battery of

J3 is 2,600 mAh). The low-end device (J3) is part of
Batterylab [73, 74], a distributed platform for battery
measurements. It follows that fine grained battery mea-
surements (via a Monsoon High Voltage Power Moni-
tor [75] directly connected to the device’s battery) are
available for this device. Automation of the above oper-
ations is realized via adb run over WiFi to avoid noise
in the power measurements caused by USB powering.
Execution time: Figure 5 shows the average duration
(standard deviation as error-bars) of each zkSENSE’s
operation, per device, when considering zkSVM. Re-
gardless of the device, humanness classification and
commitments are extremely fast, i.e., about 0.3 and 0.6
seconds even on the less powerful J3. The ZKP genera-
tion is instead more challenging, lasting about 2.9 and
39.2 seconds on the S9 and J3, respectively.

To improve visibility, the figure omits results from
the general purpose ZK-SNARK solution. In this case,
we measure commitment operations comprised between
24 and 190 seconds, and ZKP generation comprised
between 175 and 600 seconds, depending on the de-
vice. This suggests one order of magnitude speedup of
zkSVM versus the more generic ZK-SNARK solution.
Given the significant difference between zkSVM and
ZK-SNARK, in the following we mostly focus on results
obtained via zkSVM.

For the verification time, the general purpose ZK-
SNARK (808 nanoseconds) outperforms zkSVM (177
milliseconds). This is expected as the Groth16 approach
used by ZoKrates has a big prover overhead and a
trusted setup in exchange of minimal communication
and verification time overhead. However, in zkSENSE’s
scenario, these verification times can be handled by the
server, and instead, zkSVM makes the prover times rea-

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 19

sonable (as shown, the entire attestation takes a bit less
than 3 seconds) and removes the need for trusted setup.
CPU and memory utilization: Figure 6 shows CPU
usage per operation and device. Since no significant dif-
ference was observed between baseline and detection
operation, we improve the figure visibility by report-
ing only one boxplot representative of both operations.
The figure shows minimal CPU utilization associated
with humanness classification and commitment opera-
tions. The counter-intuitive higher CPU usage at the S9
is due to the fact that this is a personal device with po-
tential background activities from other apps. Even on
the less powerful J3, committing only consumes about
12% of CPU (median value across devices) with peaks
up to 45% on the J3. The ZKP generation is the most
expensive operation, showing a median CPU consump-
tion of about 15% and 30%, on respectively the S9 and
J3. Overall, the CPU analysis suggests minimal impact
of zkSENSE’s operation and feasibility even on entry-
level devices like the J3.

In our tests, we also collected memory usage of
zkSENSE’s via procstats. Detailed results are omit-
ted since zkSENSE’s memory consumption is negligi-
ble, i.e., less than 20MB regardless of device and oper-
ation. In comparison, the ZK-SNARK solution requires
up to 1GB of memory due to the data generated dur-
ing the trusted setup. This is quite limiting in presence
of low-end devices which might not have that amount
of free memory, requiring swapping and thus a further
increase in execution time.
Battery consumption: Figure 7 reports the battery
discharge (in mAh) associated with zkSENSE’s key op-
erations (detection, commitment, ZKP creation) for the
J3 – given the S9 is a personal device, we were unable
to wire its battery with the power meter. As expected
from the previous results, the battery overhead imposed
by zkSENSE’s detection and committing operation is
negligible. Further, ZKP computation only consumes
about 5 mAh or 0.2% of the J3’s battery (2,600 mAh).
Even assuming one zkSENSE’s humanness verification
every hour of device usage, this would amount to under
1% of battery discharge for the average user (3h15min
on average, with only 20% of users using the device more
than 4h30min [76]).
Bandwidth consumption: Finally, we compute what
is the bandwidth consumption required by the user to
send a proof. The proof consists of the commitments
of the difference vector, the average and standard de-
viation, for each of the input vectors the user submits.
We use data from two sensors, namely the gyroscope

and accelerometer, and for each sensor, we use three
axis data. Moreover, we split each period into two seg-
ments as explained in Section 5.2. This results in a
total of 12 input vectors. For every input vector, the
proof consists of 14 KB (83 compressed points and 354
scalars). In our library, we implemented the trivial con-
struction, where we build 12 of such proofs in parallel,
resulting in 167 KB. However, there are ways to reduce
this overhead, for which we provide the estimates. The
opening and equality proofs we used (introduced in Sec-
tion 3.3) could be improved, by implementing them us-
ing the techniques presented in [60]. This would reduce
the complexity from linear to logarithmic, resulting in
x3 improvement, with a size of the full proof of 56 KB.
Finally, we could use the batching techniques for the
range proofs, as presented in [59]. This would further
reduce the size of the proof to 45 KB.

7.1 ZKSENSE Vs. reCAPTCHA
As a next step, we compare the performance
of zkSENSE with the state-of-the-art privacy-
preserving humanness attestation mechanism (i.e., vi-
sual CAPTCHA). To do so, we developed an Android
app which embeds reCAPTCHA for Android [22]. The
app is minimal7 to ensure its performance evaluation
covers only the CAPTCHA aspect rather than any ex-
tra components. For the same reason, we opted for An-
droid reCAPTCHA rather than setting up a webpage
with a CAPTCHA to solve. This alternative approach
would require an Android browser for testing and the
performance evaluation would be tainted by the extra
cost of running a full browser. We did not evaluate Pri-
vacy Pass [77] for two reasons: 1) it currently requires
a full browser along with an add-on, 2) it lacks support
on mobile devices. Note that we do not expect critical
performance difference between Privacy Pass and An-
droid reCAPTCHA since they use a very similar strat-
egy. Their difference instead lies in how invasive they
are, both in how frequently they require user input and
from a sensor data collection standpoint.

Using the above application we setup the follow-
ing experiment. We enable remote access to the S9
device via the browser using Android screen mirror-
ing [78] coupled with noVNC [79]. Then we asked 10
volunteers to visit the device from their browsers and
solve CAPTCHAs as needed by the app. The app was
coded such that users can continuously request for a new

7 Source code: https://github.com/svarvel/CaptchaTest

https://github.com/svarvel/CaptchaTest

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 20

zkSENSE reCAPTCHA
Automatic/Manual

Overall time 3 1.4/8.9 sec
CPU utilization 15% 3/15%
Memory utilization 20 MB 20 MB
Replay protection No Yes
Consumed bandwidth 167 KB 16 KB

Table 3. Performance of zkSENSE vs. Android reCAPTCHA.

CAPTCHA to solve. Note that Android reCAPTCHA,
as reCAPTCHA v3, leverages client side behavior to
minimize friction, i.e., whether to ask or not a user to
solve a visual CAPTCHA like “click on all images con-
taining a boat”. It follows that often users do not need
to solve any visual CAPTCHA. We label automatic all
the samples we collected where our volunteers did not
have to solve a CAPTCHA. We instead label manual all
the samples where human interaction was needed. To in-
crease the chance of showing an actual CAPTCHA, we
created 15 CAPTCHAs that the app rotates on.

Over one week, our volunteers have requested
about 500 CAPTCHAs with a 70/30 split: 350 au-
tomatic and 150 manual. Table 3 directly compares
zkSENSE with Android reCAPTCHA with respect to:
execution time, CPU and memory utilization, and band-
width consumption. The median was reported for each
metric, further differentiating between automatic and
manual for Android reCAPTCHA. The table shows that
zkSENSE adds about 1.6 seconds to the time required
by Android reCAPTCHA when no user interaction is
needed. zkSENSE instead saves a whole 6 seconds to
the (median) user by never requiring any interaction.
Even considering the fastest user in our experiment (5.4
seconds), zkSENSE is about 2x faster – and 10x faster
than the slowest user (28.5 seconds). This is possible
because zkSENSE removes the need of user interac-
tion, at the cost of a higher risk for replay attacks.
With respect to CPU and memory utilization, Table 3
shows that the two mechanisms are quite similar and
both very lightweight. Bandwidth-wise, reCAPTCHA
outperforms zkSENSE (16 versus 160KB), which com-
munication overhead is still minimal and bearable even
by devices with very little connectivity.

Table 3 currently reports on "overall time" which in-
cludes both the computation time and the time required
to report to the server. While for Google we have no con-
trol on the server endpoint – located within 10ms in our
experiments – in our experiments the server runs in the
same LAN with 1-2 ms delay (negligible). We currently
use HTTP (POST) + TLS1.3 to return the proof. For
TCP, we use an unmodified kernel running Cubic with

an initial window of 10packets (1500B MTU). Given our
proof has a size of 160KB, the content delivery requires
a worst case of: 1 RTT (for TCP) + 1 RTT (for TLS, in
case of unknown server) + 3 RTT for TCP to transfer
the data – assuming slow start (doubling of cwnd), aka
15K (10 MTU sized packets) + 30K + 60K + 60K (1/2
of the last cwnd available). This sums up to about 3/4
RTTs, which we could further reduce assuming a larger
initial cwnd, or using QUIC – thus bringing the duration
down to a maximum of 2RTTs. Assuming a CDN runs
such a service, as Google does, this would thus cost be-
tween 20ms (with optimization) up to 100ms. Assuming
a very bad client connection, e.g., on mobile with RTT
of 150ms, then this would cost an extra 300 to 750ms.

7.2 Summary
Our experiments show that the general purpose ZK-
SNARK is not a viable solution for mobile-based ZKP
computation (600 sec and 2% battery drain on a low-
end device). By designing our own model (i.e., zkSVM),
we reduce ZKP’s execution time by 10×, achieving a
duration of a bit less than 3 sec and 0.2% battery drain.
This execution time is comparable with today’s visual
CAPTCHA solving time, 9.8 sec on average [21]), thus
making zkSENSE a serious competitor to state-of-the-
art mechanisms for humanness attestation.

8. Related Work
Assessing humanness: To prevent automated pro-
grams from abusing online services, the widely adopted
solution is to deploy a CAPTCHA system. However,
text-based CAPTCHA schemes have been proven to
be insecure as machines achieved 99.8% success rate
in identifying distorted text [8, 80, 81]. Audio-based
CAPTCHAs have also been used to assist visually im-
paired people, but they are difficult to solve, with over
half of users failed during their first attempt [82]. There-
fore, CAPTCHA service providers started to test image-
based CAPTCHA schemes, which require users to select
images that match given description [83]. Nevertheless,
in [7, 84] authors demonstrated that more than 70% of
image-based Google and Facebook CAPTCHAs can be
efficiently solved using deep learning.

In [85], authors designed a multi-level data fusion
algorithm, which combines scores from individual clicks
to generate a robust human evidence. These CAPTCHA
systems require users to perform additional tasks wors-
ening user experience, especially on mobile devices [86].
ReCAPTCHA v2 uses a risk analysis engine to avoid
interrupting users unnecessarily [87]. This engine col-

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 21

lects and analyses relevant data during click events. Re-
CAPTCHA v3 no longer requires users to click but in-
stead it studies user interactions within a webpage and
gives a score that represents the likelihood that a user is
a human [88]. Although these CAPTCHA schemes are
invisible to users, a plethora of sensitive data, includ-
ing cookies, browser plugins, and JavaScript objects, is
collected [89] that could be used to fingerprint the user.

With the proliferation of smartphones, various ap-
proaches leverage the variety of available sensors. Most
of them require users to perform additional motion
tasks. In [29], authors showed that waving gestures
could be used to attest the intention of users. In [27],
authors designed a bot detection system that asks users
to tilt their device according to the description to prove
they are human. In [28], authors presented a movement-
based CAPTCHA scheme that requires users to perform
certain gestures (e.g., hammering and fishing) using
their device. In [90], authors exploited touch screen data
during screen unlocking to authenticate users. In [91],
authors suggested a brightness-based bot prevention
mechanism that generates a sequence of circles with
different brightness when typing a PIN; users will in-
put misleading lie digits in circles with low brightness.
In [92], authors proposed a behavioural-based authen-
tication scheme, which uses timing and device motion
information during password typing.

The work that is most closely related to ours is the
Invisible CAPPCHA [19]. Similar to zkSENSE, authors
leveraged the different device acceleration appearing on
a finger touch and a software touch to make a decision
about whether a user is a bot. However, Invisible CAP-
PCHA is not fully implemented as it requires a secure
execution environment and its accuracy is low when de-
vice is stable on a table. In addition, it only considers
simple tap and vibration events; its accuracy on more
complicated touch events (e.g., drag, long press, and
double tap) is unclear In comparison, zkSENSE consid-
ers any types of touch events and works regardless of the
device movement. To improve the accuracy, zkSENSE
uses more data sources in addition to accelerometer and
introduces context into the detection.
Privacy-preserving and provable ML: A potential
approach to offer privacy-preserving machine learning is
to evaluate the model locally, without sending data to a
server. However, if, unlike zkSENSE, such approach is
taken without proving correct evaluation of the model,
then verification may be lost [93–95]. In cases such as
bot detection the user’s interest might be of faking the
evaluation model, and this may be vulnerable to user

attacks. To the best of our knowledge, there are only
2 papers aiming to provide provable machine learning
local evaluation without a trusted execution environ-
ment. The first one [96] tries to solve a similar prob-
lem, where personalization of a user device is done by
evaluating a model locally on the user’s machine. This
work uses Bayesian classification, for which they need
from 100-300 feature words. The generation of correct
model evaluation for such range of feature words ranges
from 30 to 80 seconds. Moreover, this study uses stan-
dard techniques for constructing zero-knowledge proofs,
which give a big overhead to the verifier. For our par-
ticular use case (where the verifier may need to handle
several requests simultaneously), such an overhead for
the verifier is not acceptable. The second one [97] pro-
poses a solution where after the evaluation of Random
Forest and Hidden Markov models, the user generates
a zero-knowledge proof of correct evaluation. However,
this paper misses an evaluation study or availability of
the code, which makes a study of the scalability of their
approach inaccessible.

9. Conclusion
Service providers need a reliable way to attest whether
a client is human or not and thus prevent user-side au-
tomation from abusing their services. Current solutions
require (i) either additional user actions (e.g., sporadi-
cally solve mathematical quizzes or pattern recognition)
like CAPTCHAs or (ii) user behavioral data to be sent
to the server, thus raising significant privacy concerns.

In this paper, we propose zkSENSE: a novel con-
tinuous human attestation scheme, which is both (i)
privacy-preserving and (ii) friction-less for the user.
By leveraging the motion sensor outputs during touch
screen events, zkSENSE performs human attestation at
the edge, on the user’s very own device, thus avoiding to
transmit any sensitive information to a remote server.
By enclosing the classification result in zero-knowledge
proofs, zkSENSE guarantees the integrity of the attes-
tation procedure. We tested our system under different
attack scenarios: (i) when device is resting (on a table),
(ii) when there is artificial movement from device’s vi-
bration, (iii) when the device is docked on a artificial
movement generating swinging cradle, and it was able
to detect if an action was triggered by a human with 92%
accuracy. Performance evaluation of our Android proto-
type demonstrates that each attestation takes around 3
seconds, with minimal impact on both CPU and battery
consumption.

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 22

Acknowledgments
We would like to thank our shepherd, Fan Zhang, and
the anonymous reviewers for their suggestions to im-
prove the paper. This research received no specific grant
from any funding agency in the public, commercial, or
not-for-profit sectors.

References
[1] Matthew Hughes. Bots drove nearly 40% of internet traffic

last year - and the naughty ones are getting smarter. https:
//thenextweb.com/security/2019/04/17/bots-drove-nearly-
40-of-internet-traffic-last-year-and-the-naughty-ones-are-
getting-smarter/, 2019.

[2] Shailin Dhar Mikko Kotila, Ruben Cuevas Rumin. Com-
pendium of ad fraud knowledge for media investors.
https://www.wfanet.org/app/uploads/2017/04/
WFA_Compendium_Of_Ad_Fraud_Knowledge.pdf, 2017.

[3] ThreatMetrix. H2 2018 cybercrime report. https:
//www.threatmetrix.com/info/h2-2018-cybercrime-report/,
2018.

[4] Drew Phillips. What is securimage? https://
www.phpcaptcha.org/, 2015.

[5] Intuition Machines, Inc. hcaptcha: Earn money with a
captcha. https://www.hcaptcha.com, 2019.

[6] Roberto Iriondo. Breaking captcha using machine learning
in 0.05 seconds. https://medium.com/towards-artificial-
intelligence/breaking-captcha-using-machine-learning-in-0-
05-seconds-9feefb997694, 2018.

[7] Suphannee Sivakorn, Iasonas Polakis, and Angelos D
Keromytis. I am robot:(deep) learning to break semantic
image captchas. In 2016 IEEE European Symposium on Se-
curity and Privacy (EuroS&P), pages 388–403. IEEE, 2016.

[8] Jeff Yan and Ahmad Salah El Ahmad. A Low-cost Attack
on a Microsoft CAPTCHA. In Proceedings of the 15th
ACM conference on Computer and communications security,
pages 543–554. ACM, 2008.

[9] Jarrod Overson. Bypassing captchas with headless chrome.
https://medium.com/@jsoverson/bypassing-captchas-with-
headless-chrome-93f294518337, 2018.

[10] Kevin Bock, Daven Patel, George Hughey, and Dave Levin.
uncaptcha: a low-resource defeat of recaptcha’s audio chal-
lenge. In 11th USENIX Workshop on Offensive Technologies
(WOOT 17), 2017.

[11] Ruti Gafni and Idan Nagar. Captcha–security affecting user
experience. Issues in Informing Science and Information
Technology, 13:063–077, 2016.

[12] Josh Dzieza. Why captchas have gotten so difficult. https:
//www.theverge.com/2019/2/1/18205610/google-captcha-
ai-robot-human-difficult-artificial-intelligence, 2019.

[13] Scott Hollier, Janina Sajka, Jason White, and Michael
Cooper. Inaccessibility of captcha: Alternatives to visual tur-
ing tests on the web. https://www.w3.org/TR/turingtest/,
2019.

[14] Wei Liu. Introducing recaptcha v3: the new way to stop
bots. https://webmasters.googleblog.com/2018/10/
introducing-recaptcha-v3-new-way-to.html, 2018.

[15] FreePrivacyPolicy. Privacy policy for recaptcha. https://
www.freeprivacypolicy.com/blog/recaptcha-privacy-policy/,

2019.
[16] Thomas Claburn. Google’s recaptcha favors – you guessed

it – google: Duh, only a bot would refuse to sign into the
chocolate factory. https://www.theregister.co.uk/2019/06/
28/google_recaptcha_favoring_google/, 2019.

[17] Katharine Schwab. Google’s new recaptcha has a dark side.
https://www.fastcompany.com/90369697/googles-new-
recaptcha-has-a-dark-side, 2019.

[18] Ismail Akrout, Amal Feriani, and Mohamed Akrout. Hack-
ing Google reCAPTCHA v3 using Reinforcement Learning.
2019.

[19] Meriem Guerar, Alessio Merlo, Mauro Migliardi, and
Francesco Palmieri. Invisible CAPPCHA: A usable mech-
anism to distinguish between malware and humans on the
mobile IoT. Computers and Security, 78:255–266, 2018.

[20] Muhammad Asim Jamshed, Wonho Kim, and KyoungSoo
Park. Suppressing bot traffic with accurate human attesta-
tion. In Proceedings of the first ACM asia-pacific workshop
on Workshop on systems, pages 43–48, 2010.

[21] Tim Allen. Having a captcha is killing your conversion rate.
https://moz.com/blog/having-a-captcha-is-killing-your-
conversion-rate, 2013.

[22] Google. Safetynet recaptcha api. https://
developer.android.com/training/safetynet/recaptcha, 2021.

[23] Elie Bursztein, Steven Bethard, Celine Fabry, John C
Mitchell, and Dan Jurafsky. How good are humans at
solving captchas? a large scale evaluation. In 2010 IEEE
symposium on security and privacy, 2010.

[24] Ivan Enríquez. Why is captcha killing your conversion
rate? https://blog.arengu.com/why-captcha-is-killing-your-
conversion-rate/, 2019.

[25] Richard Kahn. How the use of captcha can hurt user experi-
ence. https://www.anura.io/blog/how-the-use-of-captcha-
can-hurt-user-experience, 2020.

[26] Interaction Design Foundation. Killing the captcha for better
ux. https://www.interaction-design.org/literature/article/
killing-the-captcha-for-better-ux, 2016.

[27] Meriem Guerar, Mauro Migliardi, Alessio Merlo, Mohamed
Benmohammed, and Belhadri Messabih. A completely au-
tomatic public physical test to tell computers and humans
apart: A way to enhance authentication schemes in mobile
devices. In 2015 International Conference on High Perfor-
mance Computing & Simulation (HPCS), 2015.

[28] Thomas Hupperich, Katharina Krombholz, and Thorsten
Holz. Sensor Captchas: On the Usability of Instrumenting
Hardware Sensors to Prove Liveliness. In International Con-
ference on Trust and Trustworthy Computing, 2016.

[29] Babins Shrestha, Nitesh Saxena, and Justin Harrison. Wave-
to-Access: Protecting Sensitive Mobile Device Services via
a Hand Waving Gesture. In Michel Abdalla, Cristina Nita-
Rotaru, and Ricardo Dahab, editors, Cryptology and Net-
work Security, 2013.

[30] Anupam Das, Nikita Borisov, and Matthew Caesar. Track-
ing mobile web users through motion sensors: Attacks and
defenses. In NDSS, 2016.

[31] Jorge-L. Reyes-Ortiz, Luca Oneto, Albert Samà, Xavier
Parra, and Davide Anguita. Transition-Aware Human Ac-
tivity Recognition Using Smartphones. Neurocomputing,
2016.

https://thenextweb.com/security/2019/04/17/bots-drove-nearly-40-of-internet-traffic-last-year-and-the-naughty-ones-are-getting-smarter/
https://thenextweb.com/security/2019/04/17/bots-drove-nearly-40-of-internet-traffic-last-year-and-the-naughty-ones-are-getting-smarter/
https://thenextweb.com/security/2019/04/17/bots-drove-nearly-40-of-internet-traffic-last-year-and-the-naughty-ones-are-getting-smarter/
https://thenextweb.com/security/2019/04/17/bots-drove-nearly-40-of-internet-traffic-last-year-and-the-naughty-ones-are-getting-smarter/
https://www.wfanet.org/app/uploads/2017/04/WFA_Compendium_Of_Ad_Fraud_Knowledge.pdf
https://www.wfanet.org/app/uploads/2017/04/WFA_Compendium_Of_Ad_Fraud_Knowledge.pdf
https://www.threatmetrix.com/info/h2-2018-cybercrime-report/
https://www.threatmetrix.com/info/h2-2018-cybercrime-report/
https://www.phpcaptcha.org/
https://www.phpcaptcha.org/
https://www.hcaptcha.com
https://medium.com/towards-artificial-intelligence/breaking-captcha-using-machine-learning-in-0-05-seconds-9feefb997694
https://medium.com/towards-artificial-intelligence/breaking-captcha-using-machine-learning-in-0-05-seconds-9feefb997694
https://medium.com/towards-artificial-intelligence/breaking-captcha-using-machine-learning-in-0-05-seconds-9feefb997694
https://medium.com/@jsoverson/bypassing-captchas-with-headless-chrome-93f294518337
https://medium.com/@jsoverson/bypassing-captchas-with-headless-chrome-93f294518337
https://www.theverge.com/2019/2/1/18205610/google-captcha-ai-robot-human-difficult-artificial-intelligence
https://www.theverge.com/2019/2/1/18205610/google-captcha-ai-robot-human-difficult-artificial-intelligence
https://www.theverge.com/2019/2/1/18205610/google-captcha-ai-robot-human-difficult-artificial-intelligence
https://www.w3.org/TR/turingtest/
https://webmasters.googleblog.com/2018/10/introducing-recaptcha-v3-new-way-to.html
https://webmasters.googleblog.com/2018/10/introducing-recaptcha-v3-new-way-to.html
https://www.freeprivacypolicy.com/blog/recaptcha-privacy-policy/
https://www.freeprivacypolicy.com/blog/recaptcha-privacy-policy/
https://www.theregister.co.uk/2019/06/28/google_recaptcha_favoring_google/
https://www.theregister.co.uk/2019/06/28/google_recaptcha_favoring_google/
https://www.fastcompany.com/90369697/googles-new-recaptcha-has-a-dark-side
https://www.fastcompany.com/90369697/googles-new-recaptcha-has-a-dark-side
https://moz.com/blog/having-a-captcha-is-killing-your-conversion-rate
https://moz.com/blog/having-a-captcha-is-killing-your-conversion-rate
https://developer.android.com/training/safetynet/recaptcha
https://developer.android.com/training/safetynet/recaptcha
https://blog.arengu.com/why-captcha-is-killing-your-conversion-rate/
https://blog.arengu.com/why-captcha-is-killing-your-conversion-rate/
https://www.anura.io/blog/how-the-use-of-captcha-can-hurt-user-experience
https://www.anura.io/blog/how-the-use-of-captcha-can-hurt-user-experience
https://www.interaction-design.org/literature/article/killing-the-captcha-for-better-ux
https://www.interaction-design.org/literature/article/killing-the-captcha-for-better-ux

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 23

[32] Rubén San-Segundo, Henrik Blunck, José Moreno-Pimentel,
Allan Stisen, and Manuel Gil-Martín. Robust Human Ac-
tivity Recognition using smartwatches and smartphones.
Engineering Applications of Artificial Intelligence, 2018.

[33] Mohammad Malekzadeh, Richard G Clegg, Andrea Caval-
laro, and Hamed Haddadi. Protecting Sensory Data Against
Sensitive Inferences. In Proceedings of the 1st Workshop on
Privacy by Design in Distributed Systems, W-P2DS’18.

[34] Erhan Davarci, Betul Soysal, Imran Erguler, Sabri Orhun
Aydin, Onur Dincer, and Emin Anarim. Age group detection
using smartphone motion sensors. In 2017 25th European
Signal Processing Conference (EUSIPCO), 2017.

[35] Jiexin Zhang, Alastair R Beresford, and Ian Sheret. Sen-
sorID: Sensor Calibration Fingerprinting for Smartphones. In
Proceedings of the 40th IEEE Symposium on Security and
Privacy (SP). IEEE, 5 2019.

[36] Elias P. Papadopoulos, Michalis Diamantaris, Panagiotis
Papadopoulos, Thanasis Petsas, Sotiris Ioannidis, and Evan-
gelos P. Markatos. The long-standing privacy debate: Mobile
websites vs mobile apps. In Proceedings of the 26th Interna-
tional Conference on World Wide Web, WWW ’17, 2017.

[37] World Wide Web Consortium (W3C). Captcha alterna-
tives and thoughts. https://www.w3.org/WAI/GL/wiki/
Captcha_Alternatives_and_thoughts, 2019.

[38] Web Accessibility In Mind (WebAIM). Screen reader
user survey #7 results. https://webaim.org/projects/
screenreadersurvey7/, 2017.

[39] Armin Sebastian. Buster: Captcha solver for humans. https:
//github.com/dessant/buster, 2019.

[40] Jennifer Tam, Jiri Simsa, Sean Hyde, and Luis V Ahn.
Breaking audio captchas. In Advances in Neural Informa-
tion Processing Systems, pages 1625–1632, 2009.

[41] Yuanxi Ou. What is shuabang, and should i be using it to
promote my game? https://www.mobvista.com/en/blog/
shuabang-using-promote-game/, 2018.

[42] Cristina Stefanova. Black hat aso for mobile apps & games:
What is it and how it works (and why you shouldn’t do it).
https://thetool.io/2018/black-hat-aso, 2018.

[43] Gabriel Machuret. Blackhat aso news 2016: Shuabang
– a notorious blackhat app store optimization provider in
china. https://asoprofessional.com/blackhat-aso-news-2016-
shuabang-a-notorious-blackhat-app-store-optimization-
provider-in-china/, 2020.

[44] Brave Software, Inc. Get rewarded for browsing and support
your favorite content creators. https://brave.com/brave-
rewards/, 2019.

[45] Anton Kivva. The banker that can steal anything. https://
securelist.com/the-banker-that-can-steal-anything/76101/,
2016.

[46] Mike Murray. Pegasus for android: the other side of the
story emerges. https://blog.lookout.com/pegasus-android,
2017.

[47] Henry de Valence, Jack Grigg, George Tankersley, Filippo
Valsorda, and Isis Lovecruft. The ristretto255 Group.
Internet-Draft draft-hdevalence-cfrg-ristretto-01, Internet
Engineering Task Force.

[48] Isis Agora Lovecruft and Henry de Valence. curve25519-
dalek. https://crates.io/crates/curve25519-dalek, 2020.

[49] S Goldwasser, S Micali, and C Rackoff. The knowledge
complexity of interactive proof-systems. In Proceedings

of the Seventeenth Annual ACM Symposium on Theory of
Computing, STOC ’85, 1985.

[50] Manuel Blum, Paul Feldman, and Silvio Micali. Non-
interactive zero-knowledge and its applications. In Proceed-
ings of the Twentieth Annual ACM Symposium on Theory
of Computing, STOC ’88, 1988.

[51] Matteo Varvello, Iñigo Querejeta Azurmendi, Antonio
Nappa, Panagiotis Papadopoulos, Goncalo Pestana, and
Benjamin Livshits. Vpn0: A privacy-preserving decentralized
virtual private network. In Decentralising the Internet with
IPFS and Filecoin, DI2F’21, 2021.

[52] Eli Ben-sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars Virza.
Zerocash: Decentralized anonymous payments from bitcoin.
2014.

[53] Nick Grosz. How icash protects delegate votes and iden-
tities in its proof of trust protocol. https://medium.com/
@nickgrosz/how-icash-protects-votes-and-voter-identity-in-
its-proof-of-trust-protocol-7a06c38e4296, 2018.

[54] Gonçalo Pestana, Iñigo Querejeta-Azurmendi, Panagiotis
Papadopoulos, and Benjamin Livshits. Themis: Decentral-
ized and trustless ad platform with reporting integrity. arXiv
preprint arXiv:2007.05556, 2020.

[55] Jan Camenisch and Markus Stadler. Efficient Group Sig-
nature Schemes for Large Groups (Extended Abstract). In
CRYPTO, 1997.

[56] Jens Groth. On the size of pairing-based non-interactive
arguments. In Proceedings, Part II, of the 35th Annual
International Conference on Advances in Cryptology, EURO-
CRYPT’16, 2016.

[57] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah
Meiklejohn. Sonic: Zero-knowledge snarks from linear-
size universal and updateable structured reference strings.
Cryptology ePrint Archive, Report 2019/099, 2019. https:
//eprint.iacr.org/2019/099.

[58] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru.
Plonk: Permutations over lagrange-bases for oecumenical
noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953, 2019. https://eprint.iacr.org/
2019/953.

[59] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and
G. Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. In 2018 IEEE Symposium on Security and
Privacy (SP), 2018.

[60] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens
Groth, and Christophe Petit. Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log set-
ting. Cryptology ePrint Archive, Report 2016/263, 2016.
https://eprint.iacr.org/2016/263.

[61] Torben P. Pedersen. Non-interactive and information-
theoretic secure verifiable secret sharing. In Proceedings
of the 11th Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO ’91, 1991.

[62] Jens Groth. Linear algebra with sub-linear zero-knowledge
arguments. In Shai Halevi, editor, Advances in Cryptology -
CRYPTO 2009, 2009.

[63] Jan Camenisch and Markus Michels. Proving in zero-
knowledge that a number is the product of two safe primes.
In Jacques Stern, editor, Advances in Cryptology — EURO-
CRYPT ’99, 1999.

https://www.w3.org/WAI/GL/wiki/Captcha_Alternatives_and_thoughts
https://www.w3.org/WAI/GL/wiki/Captcha_Alternatives_and_thoughts
https://webaim.org/projects/screenreadersurvey7/
https://webaim.org/projects/screenreadersurvey7/
https://github.com/dessant/buster
https://github.com/dessant/buster
https://www.mobvista.com/en/blog/shuabang-using-promote-game/
https://www.mobvista.com/en/blog/shuabang-using-promote-game/
https://thetool.io/2018/black-hat-aso
https://asoprofessional.com/blackhat-aso-news-2016-shuabang-a-notorious-blackhat-app-store-optimization-provider-in-china/
https://asoprofessional.com/blackhat-aso-news-2016-shuabang-a-notorious-blackhat-app-store-optimization-provider-in-china/
https://asoprofessional.com/blackhat-aso-news-2016-shuabang-a-notorious-blackhat-app-store-optimization-provider-in-china/
https://brave.com/brave-rewards/
https://brave.com/brave-rewards/
https://securelist.com/the-banker-that-can-steal-anything/76101/
https://securelist.com/the-banker-that-can-steal-anything/76101/
https://blog.lookout.com/pegasus-android
https://crates.io/crates/curve25519-dalek
https://medium.com/@nickgrosz/how-icash-protects-votes-and-voter-identity-in-its-proof-of-trust-protocol-7a06c38e4296
https://medium.com/@nickgrosz/how-icash-protects-votes-and-voter-identity-in-its-proof-of-trust-protocol-7a06c38e4296
https://medium.com/@nickgrosz/how-icash-protects-votes-and-voter-identity-in-its-proof-of-trust-protocol-7a06c38e4296
https://eprint.iacr.org/2019/099
https://eprint.iacr.org/2019/099
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2016/263

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 24

[64] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems.
In Andrew M. Odlyzko, editor, Advances in Cryptology —
CRYPTO’ 86, 1987.

[65] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin
Lauter, Michael Naehrig, and John Wernsing. CryptoNets:
Applying Neural Networks to Encrypted Data with High
Throughput and Accuracy. In Proceedings of the 33rd Inter-
national Conference on International Conference on Machine
Learning, ICML’16, 2016.

[66] Thore Graepel, Kristin Lauter, and Michael Naehrig. ML
Confidential: Machine Learning on Encrypted Data. In Lec-
ture notes in computer science, volume 7839, 2012.

[67] Joppe Bos, Kristin Lauter, and Michael Naehrig. Private
Predictive Analysis on Encrypted Medical Data. Technical
Report MSR-TR-2013-81, 9 2013.

[68] Android Developers. Android debug bridge (adb). https:
//developer.android.com/studio/command-line/adb, 2020.

[69] Henry de Valence, Cathie Yun, and Oleg Andreev. Bullet-
proofs. https://crates.io/crates/bulletproofs, 2020.

[70] Mihir Bellare and Phillip Rogaway. Random oracles are
practical: A paradigm for designing efficient protocols. CCS
’93, 1993.

[71] ZoKrates community. Zokrates: A toolbox for zksnarks on
ethereum. https://github.com/Zokrates/ZoKrates, 2019.

[72] str4d. Bellman: Zero-knowledge cryptography in rust. https:
//github.com/zkcrypto/bellman, 2016.

[73] Matteo Varvello, Kleomenis Katevas, Mihai Plesa, Hamed
Haddadi, and Benjamin Livshits. BatteryLab: a distributed
power monitoring platform for mobile devices. In HotNets
’19, 2019.

[74] BatteryLab. A Distributed Platform for Battery Measure-
ments. https://batterylab.dev, 2019.

[75] Monsoon Solutions Inc. High voltage power monitor.
https://www.msoon.com/online-store/High-Voltage-Power-
Monitor-Part-Number-AAA10F-p90002590, 2019.

[76] Jory Mackay. Screen time stats 2019: Here’s how
much you use your phone during the workday. https:
//blog.rescuetime.com/screen-time-stats-2018/, 2019.

[77] Alex Davidson. The privacy pass protocol. https:
//tools.ietf.org/html/draft-privacy-pass-00, 2019.

[78] Solly Ross Joel Martin, Samuel Mannehed and Pierre Os-
sman. Novnc: Html vnc client library and application.
https://github.com/Genymobile/scrcpy, 2021.

[79] Novnc - the open source vnc client. https://github.com/
novnc/noVNC, 2021.

[80] A A Chandavale, A M Sapkal, and R M Jalnekar. Algorithm
to Break Visual CAPTCHA. In 2009 Second International
Conference on Emerging Trends in Engineering Technology,
pages 258–262, 12 2009.

[81] Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha
Arnoud, and Vinay Shet. Multi-digit number recognition
from street view imagery using deep convolutional neural
networks. arXiv preprint arXiv:1312.6082, 2013.

[82] Aimilia Tasidou, Pavlos S Efraimidis, Yannis Soupionis,
Lilian Mitrou, and Vasilios Katos. User-centric, Privacy-
Preserving Adaptation for VoIP CAPTCHA Challenges.
2012.

[83] Google. Are you a robot? Introducing “No CAPTCHA re-
CAPTCHA”. https://security.googleblog.com/2014/12/are-

you-robot-introducing-no-captcha.html, 2014.
[84] Yuan Zhou, Zesun Yang, Chenxu Wang, and Matthew

Boutell. Breaking Google reCaptcha V2. J. Comput. Sci.
Coll., 34(1):126–136, 10 2018.

[85] Chamila Walgampaya, Mehmed Kantardzic, and Roman
Yampolskiy. Real time click fraud prevention using multi-
level data fusion. In Proceedings of the World Congress on
Engineering and Computer Science, 2010.

[86] Gerardo Reynaga and Sonia Chiasson. The usability of
CAPTCHAs on smartphones. In 2013 International Confer-
ence on Security and Cryptography (SECRYPT), 2013.

[87] Google. Choosing the type of reCAPTCHA. https:
//developers.google.com/recaptcha/docs/versions, 2019.

[88] Google Developers. reCAPTCHA v3. https://
developers.google.com/recaptcha/docs/v3, 2018.

[89] Lara O’Reilly. Google’s new CAPTCHA security lo-
gin raises ’legitimate privacy concerns’. https://
www.businessinsider.com/google-no-captcha-adtruth-
privacy-research-2015-2?r=US&IR=T, 2015.

[90] Alexander De Luca, Alina Hang, Frederik Brudy, Christian
Lindner, and Heinrich Hussmann. Touch Me Once and I
Know It’s You!: Implicit Authentication Based on Touch
Screen Patterns. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’12, 2012.

[91] Meriem Guerar, Mauro Migliardi, Alessio Merlo, Mohamed
Benmohammed, Francesco Palmieri, and Aniello Castiglione.
Using screen brightness to improve security in mobile social
network access. IEEE Transactions on Dependable and
Secure Computing, 15(4):621–632, 2016.

[92] Attaullah Buriro, Sandeep Gupta, and Bruno Crispo. Eval-
uation of motion-based touch-typing biometrics for online
banking. In 2017 International Conference of the Biometrics
Special Interest Group (BIOSIG), pages 1–5. IEEE, 2017.

[93] Theja Tulabandhula, Shailesh Vaya, and Aritra Dhar.
Privacy-preserving Targeted Advertising. CoRR, abs/1710.0,
2017.

[94] Mikhail Bilenko and Matthew Richardson. Predictive Client-
side Profiles for Personalized Advertising. In Proceedings of
the 17th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’11, pages 413–421,
New York, NY, USA, 2011. ACM.

[95] Saikat Guha, Bin Cheng, and Paul Francis. Privad: Practical
Privacy in Online Advertising. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’11, 2011.

[96] Drew Davidson, Matt Fredrikson, and Benjamin Livshits.
Morepriv: Mobile os support for application personalization
and privacy. In Proceedings of the 30th Annual Computer
Security Applications Conference, ACSAC ’14, 2014.

[97] George Danezis, Markulf Kohlweiss, Benjamin Livshits, and
Alfredo Rial. Private Client-side Profiling with Random
Forests and Hidden Markov Models. In Proceedings of the
12th International Conference on Privacy Enhancing Tech-
nologies, PETS’12, 2012.

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://crates.io/crates/bulletproofs
https://github.com/Zokrates/ZoKrates
https://github.com/zkcrypto/bellman
https://github.com/zkcrypto/bellman
https://batterylab.dev
https://www.msoon.com/online-store/High-Voltage-Power-Monitor-Part-Number-AAA10F-p90002590
https://www.msoon.com/online-store/High-Voltage-Power-Monitor-Part-Number-AAA10F-p90002590
https://blog.rescuetime.com/screen-time-stats-2018/
https://blog.rescuetime.com/screen-time-stats-2018/
https://tools.ietf.org/html/draft-privacy-pass-00
https://tools.ietf.org/html/draft-privacy-pass-00
https://github.com/Genymobile/scrcpy
https://github.com/novnc/noVNC
https://github.com/novnc/noVNC
https://security.googleblog.com/2014/12/are-you-robot-introducing-no-captcha.html
https://security.googleblog.com/2014/12/are-you-robot-introducing-no-captcha.html
https://developers.google.com/recaptcha/docs/versions
https://developers.google.com/recaptcha/docs/versions
https://developers.google.com/recaptcha/docs/v3
https://developers.google.com/recaptcha/docs/v3
https://www.businessinsider.com/google-no-captcha-adtruth-privacy-research-2015-2?r=US&IR=T
https://www.businessinsider.com/google-no-captcha-adtruth-privacy-research-2015-2?r=US&IR=T
https://www.businessinsider.com/google-no-captcha-adtruth-privacy-research-2015-2?r=US&IR=T

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 25

Appendix
A Sub-linear Inner Product Zero-

Knowledge Proof
In this section, we prove that the zero-knowledge proof
presented in section 3.3 provides perfect completeness,
special honest verifier zero-knowledge and knowledge
soundness. Firstly, we formally define these properties,
which we reproduce as defined in [60].

A zero-knowledge proof system is defined by three
probabilistic polynomial time algorithms, (K,P,V), the
generator, prover and verifier. The generator takes as
input a security parameter written in unary form, 1λ,
and builds the common input of a proof, pp ← K(1λ).
In our paper, we use only common inputs that do not
need to be honestly generated, meaning that the out-
put of K can be publicly verified. The P and V al-
gorithms take as input (pp, u, w) and (pp, u) respec-
tively. We denote the interaction between prover and
verifier, and the latter’s output (0 if valid or 1 other-
wise) by 〈P(pp, u, w)||V(pp, u)〉. We consider relations R
that consist of a three element tuple (pp, u, w), which
we refer as the common input, instance and witness
respectively. We define the set of all valid instances
as LR = {(pp, u)|∃w : (pp, u, w) ∈ R}. The protocol
(K,P,V) is called a zero-knowledge proof system if it
has perfect completeness, knowledge soundness and spe-
cial honest-verifier zero-knowledge as described below.
First, we introduce the notion of negligible function.

Definition 1 (Negligible function). A non-negative
function f : N → R is called negligible if for ev-
ery γ ∈ N there exists a k0 ∈ N such that for all
k ≥ k0, f(k) ≤ 1/kγ.

We now proceed with a formal definition of the prop-
erties a proof system needs to have to be considered a
zero-knowledge proof.

Definition 2 (Perfect Completeness). A proof system
is perfectly complete if for all PPT adversaries A

Pr

[
pp← K(); (u,w)← A(pp) :

(pp, u, w) /∈ R ∨ 〈P(pp, u, w)||V(pp, u)〉 = 1

]
= 1

Paraphrasing, this means that whenever prover and ver-
ifier proceed with the protocol, the verifier will always
validate the proof.

Definition 3 (Knowledge soundness). A proof system
has (strong black-box) computational knowledge sound-
ness if for all DPT P∗ there exists a PPT extractor E

such that for all PPT adversaries A

Pr

 pp← K(1λ); (u, s)← A(pp);

w ← E〈P
∗(s)||V(pp,u)〉(pp, u) :

b = 1 ∧ (pp, u, w) /∈ R


is negligible with respect to λ.

Here the oracle 〈P∗(s)||V(pp, u)〉 runs a full protocol ex-
ecution from the state s, and if the proof is successful it
returns a transcript of the prover’s communication. The
extractor E can ask the oracle to rewind the proof to
any point and execute the proof again from this point
on with fresh challenges from the verifier. We define
b ∈ 0, 1 to be the verifier’s output in the first oracle exe-
cution, i.e., whether it accepts or not, and we think of s
as the state of the prover. If the definition holds also for
unbounded P∗ and A we say the proof has statistical
knowledge soundness. The definition can then be para-
phrased as saying that if the prover in state s makes a
convincing proof, then we can extract a witness.

Definition 4 (Special Honest-Verifier Zero-Knowledge).
A proof system is computationally special honest-verifier
zero-knowledge (SHVZK) if there exists a PPT sim-
ulator S such that for all state-full interactive PPT
adversaries A that output (u,w) such that (pp, u, w) ∈ R
and randomness φ for the verifier

Pr

 pp← K(1λ); (u,w, φ)← A(pp);
viewV ← 〈P(pp, u, w)||V(pp, u, φ)〉 :

A(viewV) = 1

−

Pr

 pp← K(1λ); (u,w, φ)← A(pp);
viewV ← S(pp, u, φ) :

A(viewV) = 1


is negligible with respect to λ. We say the proof is statis-
tically SHVZK if the definition holds against unbounded
adversaries, and perfect SHVZK if the probabilities are
equal.

This definition can be paraphrased as saying that for
every valid protocol run, a simulator can generate sim-
ulated random view which is indistinguishable from the
original run. Having formalised the properties, we pro-
ceed with the proof of Theorem 1:

Proof. We follow the lines of the proof presented in the
work of Bünz et al. [59] to complete our proof. Com-
pleteness is trivial. To prove special honest verifier zero-
knowledge we construct a simulator that generates valid

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 26

statements which are indistinguishable from random. To
this end, the simulator acts as follows:

C ∈R Z∗p
l, r ∈R Znp

t̂, τC , µ ∈R Zp
T2 ∈R G

T1 =
(
gt̂hτC · V −1 · T−C

2

2

)1/C

S =
(
hµ · gl · hr ·A−1)1/C

We can see that the simulated transcript,

(S, T1, T2; C; l, r, t̂, τC , µ),

all elements except for S and T1 are random, and the
latter two are computationally indistinguishable from
random due to the DDH assumption. Also, note that
S and T1 are generated following the verification equa-
tions, hence this simulated conversation is valid.

Next, we construct an extractor to prove knowledge
soundness. The extractor runs the prover with three dif-
ferent values of the challenge C, ending with the follow-
ing valid proof transcript:

(S, T1, T2; C′; l′, r′, t̂′, τ ′C , µ′)
(S, T1, T2; C′′; l′′, r′′, t̂′′, τ ′′C , µ′′)
(S, T1, T2; C′′′; l′′′, r′′′, t̂′′′, τ ′′′C , µ′′′).

Additionally, the extractor invokes the extractor of
the inner product argument. This extractor is proved
to exist in the original paper of Bunz et al. [59]. For
each proof transcript, the extractor first runs the in-
ner product extractor, to get a witness l, r to the inner
product argument such that P = hµglhr ∧ 〈l, r〉 = t̂.
With this witness, and using two valid transcripts,
one can compute linear combinations of (16), we can
compute α, ρ,a, b, sL, sR such that A = hαgahb and
S = hρgsLhsR . Such an extraction of these values pro-
ceeds as follows:

A · SC
′

= hµ
′
gl
′
hr
′

A · SC
′′

= hµ
′′
gl
′′
hr
′′
.

Combining both relations we have

S =
(
hµ
′−µ′′gl

′−l′′hr
′−r′′

) 1
C′−C′′

.

The extraction of A follows.
Using these representations of A and S, as well as

li and ri with i ∈ {′,′′ ,′′′ }, we have that

li = a+ sLCi

ri = b+ sRCi.

If these do not hold for all challenges, then the prover
has found two distinct representations of the same group
element, yielding a non-trivial discrete logarithm rela-
tion.

Next, we extract the values Ti with i ∈ {1, 2} from
equation (14) as follows:

gt̂
′
hτ
′
C = V · T C

′

1 · T C
′2

2

gt̂
′′
hτ
′′
C = V · T C

′′

1 · T C
′′2

2

gt̂
′′′
hτ
′′′
C = V · T C

′′′

1 · T C
′′′2

2

which we can combine to get the following representa-
tion of T2:

T2 =
((
gLhR

) 1
C′−C′′′

) C′+C′′′
C′+C′′

with L = t̂′−t̂′′
C′−C′′ −

t̂′−t̂′′′
C′−C′′′ and R = τ ′C−τ

′′
C

C′−C′′ −
τ ′C−τ

′′′
C

C′−C′′′ .
Extractions of T1 and V follow.

If for any transcript, we have that

t̂i 6= c+ t1Ci + t2Ci2

with i ∈ {′,′′ ,′′′ }, then the extractor has again found
a non trivial discrete logarithm relation. Let P (X) =
〈l(X), r(X)〉. Due to the validity of the transcripts, we
have that P (X) equals t(X) = c+ t1X+ t2X

2 at least in
the different challenges. In other words, the polynomial
P (X) − t(X) has at least three roots, and is of degree
2, hence it must be the zero polynomial. Therefore, we
have that t(X) = P (X). This implies that the zero co-
efficient of t(X), namely c, equals 〈a, b〉 and we have a
valid witness for the statement. �

B Formal Analysis of zkSVM
In this section we formally define the properties we ex-
pect out of zkSVM, privacy and verifiability. We use
game based proofs to show that zkSVM indeed pro-
vides these properties. We formally define them here,
and include the proofs subsequently. To model the ex-
periments of privacy and verifiability, we define the fol-
lowing five functions:

– Setup(λ): Which is defined exactly as in Proce-
dure 1. We omit the notation of the cryptographic
material, and consider it implicit. We represent the
set of parameters of the SVM model (normalisation
mean, normalisation scale, SVM weight and SVM
intercept) by W .

– GenProof(v): Generates the zkSVM proof by run-
ning Procedure 2, 3, 4, and 5. Mainly, it runs all
steps of the proof except for the submission step.

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 27

We simplify the representation of the resulting tu-
ple by [SH ,Θ, Score, rR], where Θ consists of all in-
termediate proofs and commitments.

– SubmitReq([SH ,Θ, Score, rR]): Submits the output
of GenProof(v) by sending it to the verifier (Proce-
dure 6).

– VerifReq([SH ,Θ, Score, rR]): Runs all procedures
defined in the Verification phase of zkSVM, mainly
Procedures 7, 8, 9 and 10.

– EvalSVM(v): Generates the result, Score, corre-
sponding to v, as defined in the zkSVM proof, but
excluding the cryptographic mechanisms.

B1 Privacy
The goal of zkSVM is that no information is leaked
from the input vector other than the result of the SVM
model. To model this, in Figure 8 we define an exper-
iment, Exppriv,b

A,C , between an adversary, A, and a chal-
lenger, C. The latter chooses a bit b ∈ {0, 1}, uniformly
at random, which is given as input to the experiment.
The adversary controls the zkSVM verifier, and its goal
is to distinguish the submissions of two different in-
put vectors. The adversary is given access to an ora-
cle, OSubmit(), which takes as input two vectors of size
n, runs GenProof() over them, and submits a result.
Note that it is the adversary who chooses the vectors
over which the zkSVM is executed and may modify
the weights of the SVM model outputted by Setup().
Therefore, this experiment models the malicious choice
of the SVM parameters, as well as any possible choice
of input vector. Depending on the bit, b, the oracle sub-
mits the result of one vector or the other, by running
SubmitReq(). However, to avoid a trivial win by the ad-
versary, the submitted SVM score is always computed
over the first vector. Hence, the experiment simulates
the proof of the second vector by running SimResult().
The adversary may call this oracle as many times as it
wishes. By the end of the experiment, the adversary out-
puts a bit, b′ ∈ {0, 1}. The adversary wins if b′ = b with
non-negligible probability with respect to the security
parameter, λ.

Theorem 2. There exists a SimResult algorithm, such
that no PPT adversary can win the zkSVM privacy
experiment with colluding verifier with probability non-
negligibly better than 1/2 with respect to λ.

Proof. To prove that zkSVM provides privacy we pro-
ceed by a series of games. We start with the adversary
playing the privacy experiment with b = 0, and after a
sequence of game step transitions, the adversary finishes

Exppriv,b
A,C (λ):

W← Setup(λ)
b′ ← AOSubmit(W)
Output b′

OSubmit(v1, v2):
Let [S1

H ,Θ
1, Score1, r1

R]← GenProof(v1,W)
Let [S2

H ,Θ
2, Score2, r2

R]← GenProof(v2,W)
Let Θ2 ← SimResult(S2

H , Score
1, r1

R)
return SubmitReq([Sb

H ,Θ
b, Score1, r1

R])

Fig. 8. In the privacy experiment Exppriv,b
A,C , the adversary A has

access to the oracle OSubmit and controls zkSVM verifier.

playing the ballot privacy experiment with b = 1. We ar-
gue that each of these steps are indistinguishable, and
therefore the results follows. The proof proceeds along
the following sequence of games:

Game G0 Let game G0 be the Exppriv,0
A,C (λ) game (see

Figure 8).
Game G1 Game G1 is as in G0, but now OSubmit

always computes a simulation of Θ regardless of the
bit. Mainly, OSubmit proceeds as follows:

OSubmit(v1, v2):
Let [S1

H ,Θ
1, Score1, r1

R]← GenProof(v1,W)
Let [S2

H ,Θ
2, Score2, r2

R]← GenProof(v2,W)
Let Θ1 ← SimResult(S1

H , Score
1, r1

R)
Let Θ2 ← SimResult(S2

H , Score
1, r1

R)
return SubmitReq([S1

H ,Θ
1, Score1, r1

R])

The function SimResult proceeds by simulating all
zero knowledge proofs contained in Θ. Because all
these proofs are Zero Knowledge Proofs, and hence
have the Special Honest-Verifier Zero-Knowledge
property, there exists a simulation algorithm such
that A cannot distinguish between a real and a sim-
ulated proof. Note that at this point of the experi-
ment, the commitment SH and all commitments in
Θ correspond to those of v1—only the zero knowl-
edge proofs in Θ are simulated.

Game G2 Game G2 is as in G1, but now, instead of
returning

SubmitReq([S1
H ,Θ1, Score1, r1

R]),

the oracle OSubmit returns

SubmitReq([S2
H ,Θ2, Score1, r1

R]).

In G2 the view of the adversary is identical to the
one of Exppriv,1

A,C (λ). Only thing that remains is to
prove that G1 and G2 are indistinguishable

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 28

Expverif
A,C (λ):

W← Setup(λ)
[v, SH ,Θ, Score, rR]← A(W)
If EvalSVM(v) = Score return 0
If VerifReq([SH ,Θ, Score, rR]) = ⊥
then return 0, else return 1.

Fig. 9. In the verifiability experiment Expverif
b,A , the adversary A

needs to submit a result not corresponding to the committed
vector.

Given the Special Honest-Verifier Zero-Knowledge prop-
erty of the proofs, we know that the simulated view is
random. Given that both simulations are equally dis-
tributed, it is infeasible to distinguish between Θ1 and
Θ2. Similarly, given the perfectly hiding property of
Pedersen commitments, no adversary can distinguish
between S1

H and S2
H . Clearly the resulting view is in-

dependent of b. And privacy follows. �

B2 Verifiability
The other goal of zkSVM is that an adversary cannot
convince a verifier that the result is not linked to the
committed vector as defined by the protocol. To model
this, in Figure 9 we define an experiment, Expverif

A,C , be-
tween an adversary, A, and a challenger, C. Informally,
verifiability ensures that a result that is not the out-
come of the model evaluation over the committed vec-
tor cannot have a valid proof. During the experiment the
adversary has access to the weights of the model, and
generates an input vector, a result, and its correspond-
ing proof material. The adversary wins the experiment
if the result does not correspond the the SVM execution
of the committed vector, and the verifier validates. We
formally describe the experiment in Figure 9.

Theorem 3. No PPT adversary can win the zkSVM
verifiability experiment with non-negligible probability
with respect to λ.

Proof. At the end of the proof generation procedure,
the prover (in our case the adversary) outputs a com-
mitment, SH , a tuple of intermediate cryptographic ma-
terial, Θ, and a score, Score, together with the random-
ness associated to the commitment of the score, rR. The
result follows from the soundness property of ZKPs and
the binding property of Pedersen commitments. Let us
extend the cryptographic material associated with the

vector. We have that Θ = [∆,M,M′,Λ,Λ′], with

∆ =
[
Diff, SiterH ,ΠEq,Π0

]
,

M =
[
Avg,ΠµIP

]
,

M′ =
[
Avg ′,ΠµIP

′] ,
Λ =

[
Gµ̃, H µ̃, HS ,ΠGEq,ΠHEq,ΠSEq,

V ar,Πσ
2

IP , Std,Πσsqrt
]
,

Λ′ =
[
Gµ̃ ′, H µ̃ ′, HS

′,ΠGEq ′,ΠHEq ′,

ΠSEq ′, V ar ′,Πσ
2

IP
′, Std ′,Πσsqrt ′

]
.

The proof verifies all proofs. In particular

– Procedure 7 first generates the iterated generators,
and checks that indeed SH and SiterH commit to the
same opening, by verifying ΠEq. Then, it checks
that Diff commits to the difference of SH and
SiterH , in all entries but the last, which contains a
zero, by verifying Π0.

– Procedure 8 checks that Avg commits to the sum of
the elements committed in SH by verifying ΠµIP . It
does the same for the difference vector.

– Procedure 9 first checks that Gµ̃ and H µ̃ commit
to the sum committed in Avg by verifying ΠGEq and
ΠHEq respectively. Then, it checks that HS commits
to the same values as SH by verifying ΠSEq. With
these verified commitments, the verifier can check
that V ar commits to N2〈v − µ,v − µ〉, in other
words, that it commits to a factor of the variance.
It does so by running the algebraic operations of
Equation (23), and verifying Πσ2

IP . Finally, to check
that Std commits to the standard deviation of the
vector committed in SH , it simply needs to check
that it contains the square root of V ar. It does so
by verifying Πσsqrt. The same is performed for the
difference vector.

Given that all these proofs are Zero Knowledge Proofs,
which provide the knowledge soundness property, the
commitments of the SVM features, Avg,Avg ′, Std, Std ′,
do not contain the expected features of the vector com-
mitted in SH with negligible probability. It only remains
to prove that the result indeed corresponds to the SVM
function executed with these features as inputs.

– Procedure 10 first leverages the homomorphic prop-
erties of the commitment scheme. In this way, the
verifier obtains a commitment of the linear combina-
tion of the values committed in Avg,Avg ′, Std, Std ′.
This results in the commitment of the result, as
described in Equation (22). This operation is con-

ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices 29

ducted solely by the verifier, avoiding any possible
attacks by the adversary. Finally, the verifier checks
that the submitted score, and the corresponding
opening key, indeed correspond to the locally com-
puted commitment. Only if this is true, the verifier
validates.

Given that the commitment scheme used in zkSVM
is computationally binding, a PPT adversary has no
more than negligible probability of submitting an open-
ing that does not correspond to the committed value.

Given that EvalSVM and the proof of zkSVM com-
pute the exact same operations over the input vector,
the result that the adversary has no more than negli-
gible probability of wining the verifiability experiment
follows. �

	ZKSENSE: A Friction-less Privacy-Preserving Human Attestation Mechanism for Mobile Devices
	1. Introduction
	2. Goals and Threat Model
	2.1 Threat Model

	3. Building Blocks
	3.1 Preliminaries
	3.2 Zero-Knowledge Proofs
	3.3 Homomorphic Commitment Functions

	4. Sub-linear Inner Product Zero-Knowledge Proof
	5. ZKSENSE Overview
	5.1 System Overview
	5.2 Classification of Humanness
	5.3 Privacy-Preserving and Provable ML

	6. System Implementation
	6.1 Enclosing SVM Result in a ZKP
	6.2 ZKSENSE Prototype

	7. Performance Evaluation
	7.1 ZKSENSE Vs. reCAPTCHA
	7.2 Summary

	8. Related Work
	9. Conclusion
	A Sub-linear Inner Product Zero-Knowledge Proof
	B Formal Analysis of zkSVM
	B1 Privacy
	B2 Verifiability

